https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Оригинальная статья СЕНТЯБРЬ - ОКТЯБРЬ

© КОЛЛЕКТИВ АВТОРОВ, 2024

Луковникова Л.В., Баринов В.А., Белякова Н.А., Яцеленко Ю.В.

Обоснование алгоритма выявления групп повышенного риска среди персонала химически опасных объектов

ФГБУ «Научно-клинический центр токсикологии имени академика С.Н. Голикова Федерального медико-биологического агентства», 192019, Санкт-Петербург, Российская Федерация

РЕЗЮМЕ

Введение. Исследования влияния химических веществ на здоровье работников предприятий химической отрасли на основе биомониторинга являются актуальной медико-социальной проблемой. *Цель исследования* — обосновать алгоритм обследования персонала потенциально химически опасных объектов для выявления групп повышенного риска, обусловленного действием промышленных ядов.

Материал и методы. В работе представлен анализ отечественной и зарубежной научной литературы, посвященной проблемам выявления групп повышенного риска среди рабочих химических предприятий на основе методов биомониторинга.

Результаты. Выявление групп повышенного химического риска среди работников химически опасных объектов предполагает выполнение следующих этапов: оценка уровня внешнего химического воздействия, выявление приоритетных загрязнителей, обоснование наиболее информативных биосред и времени проведения анализа, определение биомаркеров экспозиции/эффекта, выполнение клинического обследования персонала. В работе представлен анализ научной литературы по проблеме выявления групп повышенного риска на основе биомониторинга.

Ограничение исследования. Предлагаемый алгоритм выявления групп повышенного риска распространяется только на лиц, профессионально контактирующих с опасными химическими веществами.

Заключение. Для выявления групп повышенного риска среди персонала химических предприятий, в практику токсиколого-гигиенической оценки здоровья работающих необходимо внедрение предлагаемого алгоритма и разработка количественных критериев биомониторинга — биологических предельно допустимых концентраций (БПДК) или биологических индексов экспозиции.

Ключевые слова: химические вещества; биологический мониторинг; биомаркеры экспозиции/эффекта; биосреды экспозиции; биологические индексы экспозиции; группы риска

Соблюдение этических стандартов. В представленных материалах не анализируются конкретные индивидуальные данные результатов клинических или экспериментальных исследований, поэтому в статье не требуются представление заключения по биомедицинской этике.

Для цитирования: Луковникова Л.В., Баринов В.А., Белякова Н.А., Яцеленко Ю.В. Обоснование алгоритма выявления групп повышенного риска среди персонала химически опасных объектов. *Токсикологический вестник*. 2024; 32(5): 267–280. https://doi.org/10.47470/0869-7922-2024-32-5-267-280

Для корреспонденции: Луковникова Любовь Владимировна, e-mail: lukovnikova.l.v@toxicology.ru

Участие авторов. Все соавторы внесли равнозначный вклад в исследование и подготовку статьи к публикации. **Конфликт интересов.** Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование не имело спонсорской поддержки.

Поступила в редакцию: 21 августа 2024 / Принята в печать: 20 сентября 2024 / Опубликована: 30 октября 2024

SEPTEMBER - OCTOBER

https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Original article

Введение

Сохранение здоровья работающего населения, обеспечение безопасных условий труда и профилактики профессиональной заболеваемости являются приоритетными направлениями государственной политики в области трудовых отношений. Указом Президента Российской Федерации от 11.03.2019 года № 97 «Об основах государственной политики Российской Федерации в области обеспечения химической и биологической безопасности на период до 2025 года и дальнейшую перспективу» определены основные направления государственной стратегии в области обеспечения химической безопасности, среди которых можно выделить: разработка современных методов индикации химических веществ в окружающей среде и биологических средах (п.п. 4 пункта 13); разработка процедур проведения химического анализа токсикантов в окружающей среде и биологическом материале (пп. 35 пункта 13). Таким образом, перечисленные направления государственной политики по исследованию влияния химических веществ на здоровье работников предприятий химической отрасли на основе биомониторинга являются актуальной медико-социальной проблемой.

Биомониторинг как методологический подход оценки вредного действия химических факторов окружающей среды известен с девятнадцатого века. В Великобритании для контроля безопасности условий труда на угольных шахтах использовались канарейки, которые реагировали на опасные концентрации содержания окиси углерода в воздухе. Позднее, во время Второй мировой войны на подводных лодках уровень окиси углерода оценивали по поведению длиннохвостых попугаев [1]. Применительно к производственным условиям наиболее распространен метод количественного определения концентраций химических веществ в воздухе рабочей зоны и сопоставления полученных результатов с допустимыми уровнями ПДК_{р.з.}. Однако определение химических веществ в воздухе рабочей зоны позволяет оценить уровень внешнего воздействия только в конкретном месте и в определенное время и не даёт исчерпывающего представления о количестве химического вещества, фактически поступившего в организм, особенно в тех случаях, когда возможно комплексное воздействие токсиканта на организм (одновременное поступление токсиканта ингаляционно, через кожу и желудочно-кишечный тракт). Поэтому в практику оценки реальной опасности действия химических веществ стали предлагать методы биологического контроля, с помощью которых можно оценить количества токсикантов, в биосредах организма.

Исследования с применением методов биологического контроля за здоровьем работников химических предприятий стали возможными благодаря успехам аналитической химии, когда были разработаны чувствительные методы определения химических веществ и их метаболитов в биосредах. Первыми, кто предложил внедрение биомониторинга в качестве необходимого элемента токсиколого-гигиенических исследований на производстве, были J. Teisinger и H.B. Elkins, которые провели исследования по выявлению корреляций между уровнем воздействия промышленных веществ в воздухе рабочей зоны и их содержанием в биологических средах организма человека [2, 3]. Существенный вклад в разработку методологии биомониторинга (определения тестов экспозиции или биомаркеров экспозиции) внесли работы Е. Пиотровски и его сотрудников [4]. В нашей стране под руководством И.Д. Гадаскиной в 60-х годах XX века проводились исследования по изучению «судьбы» ядов в организме и определению органических и неорганических соединений в биосредах. В результате выполненных исследований И.Д. Гадаскиной и В.А. Филова изданы монографии, которые были первой попыткой обоснования биомаркеров экспозиции в России [5, 6].

Активное обсуждение необходимости использования биомониторинга для оценки профессионального воздействия химических веществ на здоровье работающих, началось в 1959 г. на Международном Симпозиуме в Праге, когда в практику токсиколого-гигиенического контроля, основанного на мониторинге вредных химических веществ в воздухе рабочей зоны (в сравнении с ПДК_{р.з.}), было предложено введение нового подхода с использованием такого показателя как «Предельно допустимая биологическая концентрация» (БПДК), которая характеризует безопасное содержание химического вещества или его метаболитов в биосредах организма работающего. Превышение БПДК рекомендовалось рассматривать как индикатор неблагополучия производственной среды, требующий повышенного внимания к условиям труда и состоянию здоровья персонала [4]. Новый подход оценки действия химических веществ на здоровье работающих нашел поддержку среди исследователей, и первоначально даже предлагалось заменить ПДК, на биологический стандарт БПДК, который представлялся, как тогда считали, более информативной и объективной характеристикой вредного действия токсикантов. Позднее стало

https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Оригинальная статья

понятно, что биомониторинговые исследования не могут заменить химического контроля за воздухом рабочей зоны и являются дополнением к химическому мониторингу при оценке состояния здоровья персонала. Без анализа данных химического мониторинга нет возможности оценить токсичность и опасность присутствующих в воздухе или другом объекте производственной среды химических веществ и выделить из них приоритетный загрязнитель, который в свою очередь определяется в биосредах организма. По результатам выполненного исследования обосновывается биомаркер экспозиции и/или эффекта, наиболее информативная биологическая среда и время определения токсиканта [7, 8].

Несмотря на очевидную необходимость внедрения биологического контроля за уровнем химической нагрузки у рабочих и в первую очередь у лиц, работающих на потенциально опасных химических объектах (ПОХО), в Российской Федерации, в отличие от стран Европейского Союза и США, не разработана система оценки содержания химических веществ в биосредах организма человека. Практически отсутствует методологическая база для проведения обследований различных профессиональных групп работающего населения с применением методов биомониторинга, не разработаны и не внедрены требования к обоснованию биомаркеров экспозиции и эффекта в зависимости от токсикокинетики, механизма токсического действия и клинических проявлений токсикантов. Особенно эта проблема актуальна для оценки здоровья персонала предприятий, использующих технологии с применением или получением химических веществ 1-го и 2-го класса опасности [7, 8].

Цель исследования — обосновать алгоритм обследования персонала ПОХО для выявления групп повышенного риска среди лиц, контактирующих с наиболее токсичными и опасными загрязнителями производственной среды.

Материал и методы

Методы исследования — анализ научной литературы, отечественные и зарубежные методические материалы по биомониторингу.

Результаты

В настоящее время в научной литературе появляется множество статей, посвященных проблеме биомониторинга. Более всего представлены исследования по оценке риска химического воздействия, в которых приводится анализ отечественных и зарубежных исследований с применением

методов биомониторинга, что подтверждает обоснованный интерес к данной проблеме [9—14]. В основном в статьях обсуждаются методические вопросы определения токсикантов или их метаболитов в биосредах как подтверждение факта присутствия химического вещества в организме, что соответствует определению термина биомаркер экспозиции [15—19].

Значительно меньше в научной литературе уделяется внимание биологическим маркерам (Biomarkers) эффекта или повреждения, которые характеризуют не только факт обнаружения токсиканта в биосредах, но и специфический или неспецифический ответ организма на действие химического вещества. Достаточно часто исследователи не делают различий между биомаркерами экспозиции и биомаркерами эффекта, используя общий термин биомаркеры [10, 16].

Не достаточно внимания уделяется таким важным характеристикам, как время отбора биоматериала и обоснование выбора биосред для выполнения биомониторинговых исследований. Если скорость выведения вещества высока и ограничивается часами (например, при работе персонала с хромом, марганцем, спиртами, анилином, фтором, оксидом углерода и др.), то отбор проб проводится во время смены или сразу после рабочей смены. Для веществ, имеющих большой период полувыведения (недели, месяцы, как, например, для свинца) время отбора проб у стажированных рабочих не имеет большого значения, но для вновь поступивших на работу, первое определение проводится не ранее, чем после двух недель экспозиции [20].

Анализ отечественной и зарубежной литературы показал, что обоснование и разработка БПДК для всех регламентированных промышленных ядов не требуется.

Обсуждение

Для полного представления о характере токсического действия химического вещества в равной степени необходимы количественные характеристики биомониторинга, дополненные информацией о механизме токсического действия токсиканта, то, что называется в научной литературе биомаркером эффекта. Количественные характеристики биомониторинга — биологические индексы экспозиции (БИЭ) или Biological Exposure Indices (ВЕІ) были приняты и обоснованы в США в 90-е годы прошлого столетия Американской конференцией правительственных промышленных гигиенистов (American Conference of Governmental Industrial Hygienists — ACGIH).

SEPTEMBER - OCTOBER

https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Original article

ВЕІ – это количественное выражение содержания химического вещества и/или его метаболита в биосредах, а также величины некоторых биохимических показателей, которые определяются у практически здоровых лиц, имеющих профессиональный контакт с химическим веществом на уровне гигиенических регламентов (TLV, TWA, MAK) [20, 21]. При анализе преимуществ и недостатков различных подходов оценки риска воздействия химических веществ на организм, используются такие показатели, как биомаркер экспозиции и биологический индекс экспозиции. Различие этих терминов заключается в том, что биомаркер экспозиции характеризует содержание химического вещества в организме работающего в результате профессионального контакта с токсикантом. ВЕІ или БПДК – это безопасное содержание токсиканта в организме человека при внешнем действии того же токсиканта на допустимом уровне (ПД $K_{p.3.}$, TLV, TWA) [20]. Рекомендованные в США BEI, во Франции получили название ориентировочные максимально допустимые концентрации (Tentative maximum permissible concentration – TMPC), в Германии - биологические толерантные величины (Biologische Arbeitstofftoleranzwerte – BAT), B Pocсии – БПДК. Подтверждением необходимости сопоставления ВЕІ с полученными величинами биомаркеров экспозиции и значениями порогового предела (TLV, TWA) является то, что ACGIH включила в свои перечни величины порогового предела (TLV, TWA), таким образом, подчеркивая важность сопоставления внешнего воздействия токсиканта с допустимыми уровнями TLV, TWA и BEI, особенно при оформлении экспертных заключений [7, 8, 20]. Материалы ACGIH регулярно издаются и постоянно пополняются.

Еще одной характеристикой, необходимой для выявления групп повышенного риска, является выявление биомаркеров (Biomarkers) эффекта у лиц, подверженных химическому воздействию. Трудности обоснования биомаркеров эффекта или повреждения обусловлены необходимостью исследования метаболизма и механизма повреждающего действия, сопоставления клинических симптомов отравления с изменениями биохимических, физиологических, иммунологических и многих других показателей с концентрациями или дозами химического воздействия токсиканта на допустимом и/или действующем уровне. Изучение механизма повреждающего действия химического вещества и тщательный анализ клинической картины интоксикации, выявление наиболее характерных симптомов отравления позволяет обосновать их как биомаркеры эффекта. Например,

снижение уровня восстановленного глутатиона и повышение его окисленной формы при отравлении ртутью, обнаружение повышенного количества ртути в биосредах, которое сопровождается проявлением характерных клинических признаков отравления, позволяет диагностировать интоксикацию ртутью [22, 23]. Было бы ошибкой считать, подобно мнению некоторых авторов, что диагноз профессионального заболевания и определение профпригодности можно установить только по данным биомониторинга, на основании обнаружения токсиканта или его метаболитов в биосредах [10, 11]. Результаты выполненного биологического контроля по содержанию токсикантов в биосредах являются дополнительной объективной характеристикой профессионального воздействия химических веществ на организм. По мнению И.М. Трахтенберга, который неоднократно акцентировал внимание исследователей на том, что определение даже повышенного содержания ртути в крови или моче без симптомов отравления не может быть основанием для постановки диагноза — интоксикация ртутью [24, 25].

Биомаркеры эффекта или повреждения как ответная реакция организма на химическое воздействие зависит от многих факторов, среди которых: индивидуальные генетические особенности, активность ферментов биотрансформации, характер питания, социально-бытовые условия, вредные привычки. Персонализированный подход при обосновании биомаркеров эффекта на основе генетических методов позволяет выявить предрасположенность и развитие наиболее распространенных и социально значимых заболеваний. В первую очередь это касается полиморфизма таких генов как: СҮР1А2, СҮР2А6, СҮР2Д6, NAT2, позволяющих прогнозировать развитие онкологических заболеваний. Именно этим категориям лиц, необходимы более частые медицинские осмотры, особенно при контакте с химическими онкогенами. Определение активности ферментов биотрансформации, участвующих в детоксикации чужеродных соединений, экспрессия генов синтеза металлотионеинов (МТ2А и МТ3), играющих важную роль в детоксикации тяжелых металлов, позволяют с высокой степенью надежности выявлять наиболее уязвимых лиц среди персонала в ходе регулярных медицинских осмотров [26, 27]. Обоснование биомаркеров эффекта или повреждения с учётом генетических особенностей у разных групп населения дает возможность на качественно новом уровне проводить профилактику и диагностику профессиональных и профессионально обусловленных заболеваний химической этиологии [27].

СЕНТЯБРЬ - ОКТЯБРЬ

Встречаются предложения об использовании показателей системы иммунитета у лиц, подверженных действию аллергенов, например, бериллия, которые могут рассматриваться как биомаркеры эффекта при проведении периодических медицинских осмотров [8, 28].

Недостаточно убедительным является утверждение о том, что при обосновании биомаркеров эффекта для работников, контактирующих в процессе производства с растворителями, можно использовать только микроядерный тест на лимфоцитах, чтобы избежать необходимости определения целого спектра химических соединений в крови персонала [12]. Не отрицая значимости и возможности использования микроядерного теста в качестве дополнительной характеристики при обосновании биомаркера эффекта для экспертного заключения о профессиональном действии химических веществ на здоровье персонала, в первую очередь необходимы подробные сведения о действующих концентрациях, определяемых в воздухе рабочей зоны, и определение приоритетного загрязнителя или его метаболита в биосредах, после чего можно обосновать биомаркеры экспозиции, а при наличии симптомов интоксикации – биомаркеры эффекта [12].

Российской Федерации, по данным СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утверждены 2484 гигиенических регламентов для воздуха рабочей зоны, однако БПДК, как известно, для абсолютного большинства нормированных химических веществ не разработаны. В первую очередь биологические индексы экспозиции или, как принято в Российской Федерации, БПДК, необходимы для веществ, поступающих в организм не только ингаляционным путем, но и проникающих через кожу. Их количество достаточно велико и составляет примерно одну треть от всех используемых в промышленности веществ. Следующие группы веществ, для которых разработка БПДК обязательна, представляют промышленные яды, вызывающие серьезные нарушения и последствия для здоровья человека, например, повреждение кроветворной системы такими веществами, как бензол, анилин, нитротолуол, химические вещества, широко используемые в промышленности, с которыми контактируют значительные контингенты работающих, а также вещества, влияющие на репродуктивную функцию и токсиканты, оказывающие выраженное специфическое действие: канцерогены, аллергены, тератогены [8, 29].

Выполняя биомониторинговые исследования следует принимать во внимание, что не все биосреды в равной степени достаточно информативны для обнаружения и количественной оценки поступившего химического вещества в организм. В таблице показано, что достоверность и информативность результатов анализа различных биосред зависит от токсикокинетических и токсикодинамических свойств химических веществ (см. таблицу) [22]. Известно, что каждое химическое вещество имеет свои особенности поступления, распределения, накопления и выведения, которые являются основными характеристиками токсиканта при выборе биосред для анализа и обоснования времени отбора биоматериала. Наиболее часто для биомониторинга используются такие биосреды, как моча, кровь, выдыхаемый воздух, содержимое кишечника, для специальных исследований определение токсикантов проводится в слюне, грудном молоке, волосах, ногтях, зубах, жировой ткани, потовой и спинномозговой жидкостях. Не случайно значения индексов экспозиции (BEIs), рекомендованные Американской конференцией правительственных промышленных гигиенистов (ACGIH) представлены с обязательным указанием биологической среды исследования и времени отбора проб [20, 21].

В документах Министерства здравоохранения СССР проблема биологического мониторинга впервые была представлена в Методических рекомендациях «Биологический контроль производственного воздействия вредных веществ» (Москва, 1990 г., № 5205-90 утв. 07.12.1990), в которых излагаются основные принципы выполнения биологического контроля действия вредных химических веществ в условиях производства. На примере обоснования БПДК толуола предложено определение гиппуровой кислоты и о-крезола в моче у рабочих в конце смены. Определение метаболитов толуола показало, что на уровне ПДК_{р.з.} толуола, содержание гиппуровой кислоты (ГК) и о-крезола соответствует физиологическому уровню содержания названных метаболитов: $\Gamma K - 0.74 \pm 0.05$ г/л; о-крезола — 0.12 ± 0.07 мг/л. Авторы документа обращают внимание на сложности обоснования БПДК в результате разброса индивидуальных данных по количеству ГК и о-крезола в моче работников. К сожалению, в цитируемых методических рекомендациях приводится только один пример (определение БПДК толуола) и предлагаемая БПДК толуола не утверждена.

В 2012 г. в Федеральном государственном бюджетном учреждении науки «Институт токсикологии Федерального медико-биологическо-

SEPTEMBER - OCTOBER

https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Original article

Информативность различных биосубстратов для определения неорганических веществ [22]

Химический элемент	Биосреды организма					
	кровь	моча	волосы	ногти	зубы	слюна
Свинец	++	+	++	+	++	_
Ртуть	+	+	+	+	ı	_
Кадмий	Х	++	+	+	+?	-
Мышьяк	Х	+	++	+	-	_
Фтор	-	++	++	+	++	++
Хром	+	+	+	+	+	_
Никель	Х	+?	х	-	-	_
Кобальт	+	-	х	+	-	_
Марганец	+	+?	+	1	-	_
Цинк	-	+	х	+	+	_
Сурьма	_	_	+	_	_	_
Селен	_	+	+	+	_	_
Медь	х	+	х	х	+	+

Обозначения: + – содержание элемента в биосубстрате изменяется; ++ – содержание элемента в этом биосубстрате обнаруживается раньше, чем в других; х – содержание элемента обнаруживается только при высоких уровнях воздействия; ? – данные об обнаружении элемента в биосредах противоречивы/отсутствуют.

го агентства» были разработаны методические рекомендации «Выявление групп повышенного риска среди профессионально занятого населения, контактирующего с наиболее опасными металлами» (МР 2.2.5.059—2012), в которых в общем виде излагается алгоритм выявления групп повышенного риска среди лиц, подверженных действию металлов, представлена характеристика биологических сред для анализа, методы определения некоторых металлов в биосредах организма. Предлагаемые методические приемы выявления групп повышенного риска среди лиц, подверженных действию металлов, изложенные в МР 2.2.5.059—2012, требуют дополнения и дальнейшего совершенствования.

В общем виде алгоритм выявления групп повышенного риска на основе биомониторинга представляет собой последовательное выполнение определённых этапов.

На первом этапе определяется уровень внешнего воздействия химических веществ в воздухе рабочей зоны, при необходимости, с использованием индивидуальных пробоотборников и выполнением смывов с поверхностей оборудования. По результатам анализа результатов химического мониторинга проводится ранжирование выявленных токсикантов по степени токсичности и опасности для человека и выделяется приоритетный загрязнитель.

На втором этапе выполняется определение приоритетного загрязнителя или его метаболитов в наиболее информативных биологических субстратах организма с учетом токсикодинамических и токсикокинетических характеристик токсиканта. Характер токсического действия вещества и его токсикокинетика дает возможность обосновать наиболее информативные биосреды экспозиции, время отбора проб для исследования, установить количественную характеристику воздействия промышленного яда, определить биомаркер экспозиции.

Третий этап заключается в клиническом обследовании персонала с учётом полученных сведений о характере токсического действия приоритетных химических загрязнителей, количественном содержании токсиканта в объектах окружающей среды и в биосредах организма. Результаты химического и биологического мониторинга, величина биомаркера экспозиции сопоставляются с данными клинического обследования, что позволяет объективно обосновать биомаркер эффекта.

Ограничение исследования. Предлагаемый алгоритм выявления групп повышенного риска распространяется только на лиц, профессионально контактирующих с опасными химическими веществами.

Заключение

Подводя итог изложенному, необходимо подчеркнуть несомненные преимущества включения биомониторинга как обязательного элемента доказательной медицины в алгоритм обследования персонала химических предприятий для совершенствования профилактики, диагностики и лечения заболеваний химической этиологии. Однако в разработке методических подходов оценки риска на основе биомониторинга имеется ряд нерешенных проблем:

- 1. Биологические предельно допустимые концентрации практически не разрабатываются. В основном исследования направлены на определение биомаркеров экспозиции и обоснование чувствительных методов определения токсикантов или их метаболитов в биосредах.
- 2. Не уделяется должного внимания обоснованию выбора информативных биосред и времени проведения анализа для определения токсикантов в биологических субстратах.
- 3. Наиболее сложной представляется ситуация с доказательством биомаркеров эффекта/повреждения, поскольку требует объединения усилий специалистов разного профиля: гигиенистов, химиков, токсикологов, профпатологов.

https://doi.org/10.47470/0869-7922-2024-32-5-267-280 Оригинальная статья

СЕНТЯБРЬ - ОКТЯБРЬ

ЛИТЕРАТУРА

- Мур Дж., Рамамурти С. Тяжёлые металлы в природных водах: контроль и оценка влияния: пер. с англ. М.: Мир: 1987.
- Elkins H.B. Analyses of biological materials as indices of exposure to organic solvents. Arch. Ind. Hyg. Occup. Med. 1954; 9: 212–21.
- Teisinger J., Skroamovsky St., Srbova J. Chemical methods for the evaluation of biological material in industrial toxicology. Prague: SZN; 1956.
- Piotrowski Jerzy. The application of metabolic and excretion kinetics to problems of industrial toxicology. Washington: U.S. Dept. of Health, Education, and Welfare; 1971.
- Гадаскина И.Д., Филов В.А. Превращения и определение промышленных органических ядов в организме. Ленинград: Медицина; 1971.
- Гадаскина И.Д., Гадаскина Н.Д., Филов В.А. Определение промышленных неорганических ядов в организме. Ленинград: Медицина; 1975.
- Луковникова Л.В., Сидорин Г.И., Аликбаева Л.А., Галошина А.В. О роли биомониторинга при оценке состояния здоровья населения, подверженного экспозиции ртутью. Токсикологический вестник. 2017; 5: 2–7.
- Biological Monitoring of Chemical Exposure in Workplase. Guidelines. Genewa: WHO; 1996
- Уколов А.И., Радилов А.С. Методология определения биомаркеров органических соединений с использованием хроматомасс-спектрометрии. Медицина экстремальных ситуаций. 2018; 20(3): 439–50.
- Шилов В.В., Маркова О.Л., Кузнецов А.В. Биомониторинг воздействия вредных химических веществ на основе современных биомаркеров. Обзор литературы. Гигиена и санитария. 2019; 98(6): 591–6.
- Маркова О.Л., Шилов В.В., Кузнецов А.В., Метелица Н.Д. Сравнительная оценка подходов к проблеме биомониторинга здоровья человека отечественных и зарубежных исследователей (обзор литературы). Гигиена и санитария. 2020; 99 (6): 545-9.
- Морозов Д.Ю. Биомониторинг человека как метод оценки воздействия факторов химической природы на работников судоремонтной и судостроительной отрасли. Морская медицина. 2021; 7(2): 69–79.
- Human biomonitoring: facts and figures. Copenhagen: WHO Regional Office for Europe; 2015.
- Журба О.М., Шаяхметов С.Ф., Алексеенко А.Н., Меринов А.В., Дорогова В.Б. Исследование биомаркера экспозиции хлорорганических соединений у рабочих производств винил и поливинилхлорида. Гигиена и санитария. 2018; 97(2): 160–4.
- Уколов А.И., Сорокоумов П.Н., Уколова Е.С., Савельева Е.И., Радилов А.С. Определение дихлофоса, диметоата, хлорпирифоса, фозалона, диазинона и метилпаратиона в крови и моче методом газовой хроматографии с тандемным масс-селективным детектированием. Аналитика и контроль. 2014; 18(3): 280–6.
- Сивак К.В., Саватеева-Любимова Т.Н., Гуськова Т.А. Методические подходы к раннему выявлению острого повреждения почек токсического генеза на основе динамики некоторых биомаркеров. Токсикологический вестник. 2019; 2(155): 37–42.

- Рембовский В.Р., Могиленкова Л.А., Радилов А.С., Савельева Е.И., Комбарова М.Ю.
 Перспективы биомониторинга для оценки здоровья при работах с опасными химическими веществами. Медицина экстремальных ситуаций. 2018: 20(3): 398–407.
- Уколов А.И., Сорокоумов П.Н., Радилов А.С. Определение токсикокинетических параметров вредных химических соединений для повышения эффективности биомониторинга. Медицина экстремальных ситуаций. 2019; 1: 83–94.
- Уколов А.И., Комбарова М.Ю., Рейнюк В.Л., Баринов В.А., Радилов А.С. Анализ перспективных направлений совершенствования методической части системы биологического мониторинга на потенциально химически опасных объектах (аналитический обзор). Токсикологический вестник. 2024; 32(3): 137–61. https://doi.org/10.47470/0869-7922-2024-32-3-137-161
- TLVs and BEIs Based on the Documentations for Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. Cincinnati: ACGIH. WORLDWIDE; 1999.
- TLVs and BEIs Based on the Documentations for of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. Cincinnati: ACGIH. WORLDWIDE 2012
- Трахтенберг И.М., Колесников В.С., Луковенко В.П. Тяжелые металлы во внешней среде. Минск: Навука і Тэхніка; 1994.
- Трахтенберг И.М., Шафран Л.М. Приоритетные аспекты проблемы токсикологии металлов как тиоловых ядов. В кн: Материалы IV съезда токсикологов России 6–8 ноября 2013, г. Москва, под ред. Г.Г. Онищенко и Б.А. Курляндского. М.: Российский регистр потенциально опасных химических и биологических веществ; 2013: 475–7.
- Трахтенберг И.М. Книга о ядах и отравлениях. Очерки токсикологии. Киев: Наукова думка; 2000.
- Трахтенберг И.М., Тычинин В.А., Талакин Ю.Н., Лампека Е.Г., Остроухова В.А, Покровская Т.Н., Юречко Е.И. К проблеме носительства тяжелых металлов. Журн. АМН Украины. 1999; 5(1): 87–95.
- Мухин Н.Н., Измеров Н.Ф., Соркина Н.С. Профессиональная патология сегодня. Проблемы и решения. В кн.: Материалы XII Всероссийского Конгресса «Профессия и здоровье» и V Всероссийского съезда врачей профпатологов. Москва 27–30 ноября 2013. М.: Реинфор. 2013: 49–61.
- 27. Измеров Н.Ф., Кузьмина Л.П., Коляскина М.М. и др. Молекулярно-генетические исследования в медицине труда. *Гигиена и санитария*. 2011; 5: 10–4.
- Стосман К.И., Луковникова Л.В. Особенности иммунного ответа у лиц, профессионально контактирующих с бериллием. Токсикологический вестник. 2016; 5: 26–30.
- Хамидулина Х.Х., Рабикова Д.Н. Разработка национального перечня канцерогенов, мутагенов и репротоксикантов и его внедрение в регулирование обращения химических веществ на территории Российской Федерации и государств евразийского экономического союза. Гигиена и санитария. 2021; 100(9): 897–902.

СВЕДЕНИЯ ОБ АВТОРАХ

Луковникова Любовь Владимировна, доктор мед, наук, профессор, ведущий научный сотрудник ФГБУ «НКЦТ им. С.Н. Голикова ФМБА России», 192019, Санкт-Петербург, Российская Федерация. E-mail: lukovnikova.l.v@toxicology.ru

Баринов Владимир Александрович, доктор мед. наук, профессор, ведущий научный сотрудник ФГБУ «НКЦТ им. С.Н. Голикова ФМБА России», 192019, Санкт-Петербург, Российская Федерация. E-mail: vladbar.57@yandex.ru

Белякова Наталия Александровна, кандидат мед. наук, заведующая научно-исследовательским отделом ФГБУ «НКЦТ им. С.Н. Голикова ФМБА России», 192019, Санкт-Петербург, Российская Федерация. E-mail: bna3316@mail.ru

Яцеленко Юлия Валерьевна, научный сотрудник ФГБУ «НКЦТ им. С.Н. Голикова ФМБА России», 192019, Санкт-Петербург, Российская Федерация. E-mail: julia@yatselenko.ru