Preview

Токсикологический вестник

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Некоторые аспекты оценки токсичности металЛо- оксидных наночастиц на клеточных культурах (на примере NiO и Mn3O4)

Полный текст:

Аннотация

Сравнительная и комбинированная оценка повреждающего действия наночастиц NiO и Mn3O4 получена на культурах различных человеческих стабильных клеточных линий. Найдено, что добавление эмбриональной бычьей сыворотки крови (FBS) ко всем использованным культуральным средам делает эти металлооксидные наночастицы (MeO-НЧ), в особенности, Mn3O4-НЧ экспоненциально растворимыми, в то время как без FBS их растворимость крайне низка. Вместе с тем, присутствие FBS существенно замедляет седиментацию, связанную с агрегацией этих MeO-НЧ. Показана зависимость повреждения клеток от концентрации МеО-НЧ при более высокой цитотоксичности Mn3O4-НЧ по сравнению с NiO-НЧ. Таким образом, сравнительная оценка неспецифической токсичности, полученная ранее в экспериментах «ин виво», воспроизведена «in vitro». Однако по отношению к ранее обнаруженному марганец-специфичному повреждению головного мозга при субхронической интоксикации теми же наночастицами, нынешний эксперимент на нейронах «in vitro» показал лишь некоторое усиливающее влияние Mn3O4-НЧ в комбинации с NiO-НЧ, роль которых преобладала.

Об авторах

И. А. Минигалиева
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора
Россия


Т. В. Бушуева
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора
Россия


В. Г. Панов
Институт промышленной экологии УрО РАН
Россия


А. Н. Вараксин
Институт промышленной экологии УрО РАН
Россия


В. Я. Шур
Институт естественных наук и математики ФГАОУ ВО «УрФУ имени первого Президента России Б.Н. Ельцина»
Россия


Е. В. Шишкина
Институт естественных наук и математики ФГАОУ ВО «УрФУ имени первого Президента России Б.Н. Ельцина»
Россия


В. Б. Гурвич
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора
Россия


Б. А. Кацнельсон
ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора
Россия


Список литературы

1. katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B, Loginova N.V., Minigalieva I.A. et al. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview) . International J. Nanomedicine. 2015; 10: 3013-3029

2. Chen Q., Xue Y., Sun J. Kupffer cellmediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed. 2013; 8, 129–1140.

3. Horie M., Fukui H., Nishio k., Endoh S., kato H., Fujita k. et al. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health. 2011; 53: 64-74.

4. Privalova L.I., katsnelson B.A., Varaksin A.N., Panov V.G., Balesin S.L. The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology. 2016; 370: 78-85

5. Кацнельсон Б. А., Минигалиева И. А., Привалова Л. И., Сутункова М. П., Гурвич В. Б., шур В. Я. и др. Реакция глубоких дыхательных путей крысы на однократное интратрахеальное введения наночастиц оксидов никеля и марганца или их комбинации и её ослабление биопротекторной премедикацией. Токс. Вестник. 2014; 6: 8-14/ Katsnelson B.A., Minigalieva I.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y. et al. Lower airways response to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pretreatment. Toxicological Review, 2014; 6 (129): 8-14( in Russian).

6. katsnelson B.A., Minigalieva I.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B. et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem. Toxicol. 2015a; 86: 351-364

7. Pietruska J. R., Liu X. , Smith A., McNeil k., Weston P., Zhitkovich A., Hurt R., kane A. B. Bioavailability, intracellular mobilization of nickel, and HIF-1 alpha activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 2011; 124: 138-148.

8. Ahamed M. , Ali D., Alhadlaq H. A., Akhtar M. J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2), Chemosphere. 2013; 93: 2514-2522.

9. Duan W. X., He M. D., Mao L., Qian F. H. , Li Y. M., Pi H. F. et al. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2015; 286(2):80-91.

10. Hussain S.M., Javorina A.k., Schrand A.M., Duhart E.M., Ali S.F., Schlager J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sciences. 2006; 92: 456-463

11. Choi J.Y, Lee S.H., Na H.B., An K., Hyeon T., Seo T.S. In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng. 2010; 33: 21-30

12. Ivask A., Titma T., Visnapuu M., Vija H., kakinen A., Sihtmae M. et al. Toxicity of 11 metal oxide nanoparticles to three Mammalian cell types in vitro. Curr Top Med Chem. 2015; 15:1914-1929.

13. Khan S., Ansari A.A., Khan A.A., Abdulla M., Al-Obeed O., Ahmad R. In vitro evaluation of anticancer and biological activities of synthesized manganese oxide nanoparticles. Med. Chem. Commun. 2016; 7: 1647-1653

14. Alarifi S., Ali D., Alkahtani S. Oxidative stress-Induced DNA damage by manganese dioxide nanoparticles in human neuronal cells. Hindawi BioMed Research International, 20Vol. 2017, Article ID 5478790, 10 pages

15. Chanput W., Peters V., Wichers H. THP-1 and U937 Cells. Chapter 14 of “The impact of food bioactives on health:in vitro and ex vivo models” (Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H.,Eds., Springer International Publishing), 2015; 147-159

16. kovalevich J., Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013; 1078: 9-21

17. Sutunkova M.P., katsnelson B.A., Privalova L.I., Gurvich V.B., konysheva L.k., Shur V.Ya. et al. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology. 2016; 363: 19-28

18. Minigalieva I.A., katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y. et al. Attenuation of combined nickel (II) oxide and manganese (II,III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. of Mol. Sci. 2015; 16 (9): 22555-22583

19. Barber B.J., Schultz T.J., Randlett D.L. Comparative analysis of protein content in rat mesenteric tissue, peritoneal fluid, and plasma. Am J Physiol. 1990; 258: 714-718.

20. Stewart Hendrickson H., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide . Biochemistry. 1965; 4: 1599–1605

21. del Pino P., Pelaz B., Zhang Q., Maffre P., Nienhaus G.U., Parak W. J. Protein corona formation around nanoparticles – from the past to the future. Mater. Horiz. 2014; 1: 301-313

22. Zhdanov V.P., Cho N.J. Kinetics of the formation of a protein corona around nanoparticles. Math Biosci. 2016; 282: 82-90

23. Sager T.M., Porter D. W., Robinson V.A., Lindsley W.G., Schwegler-Berry D.E. Castranova V. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity . Nanotoxicology. 2007; 1: 118-129

24. Bernas T., Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry. 2002; 47:236 –242

25. Meyer J.N., Leung M.k.L., Rooney J.P., Sendoel A., Hengartner M.O., kisbey G.E. at all. Mitochondria as a target of environmental toxicants. Toxicol Sci. 2013; 134: 1-17

26. kelley J.L., Rozek M.M., Suenram C.A., Schwartz C.J. Activation of human blood monocytes by adherence to tissue culture plastic surfaces. Exp.Mol. Pathol. 1987; 46(3): 266-78.

27. Privalova L.I., katsnelson B.A., Sharapova. N.Y., Kislitsina N.S. On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (an overview). Med.Lavoro. 1995; 86: 511-521

28. Minigalieva I.A., katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I. at all. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team.Toxicology Reports. 2017b; 4C. 194-201

29. ZhuY., Zhang J., Zeng Y. Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2012; 11: 350-358

30. khwanraj k., Phruksaniyom C., Madlah S., Dharmasaroja P. Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SHSY5Y neuroblastoma cells treated with MPP+. Neurology Research International, 2015: article ID 734703


Для цитирования:


Минигалиева И.А., Бушуева Т.В., Панов В.Г., Вараксин А.Н., Шур В.Я., Шишкина Е.В., Гурвич В.Б., Кацнельсон Б.А. Некоторые аспекты оценки токсичности металЛо- оксидных наночастиц на клеточных культурах (на примере NiO и Mn3O4). Токсикологический вестник. 2017;(5):35-43.

For citation:


Minigalieva I.А., Bushueva T.V., Panov V.G., Varaksin A.N., Shur V.Y., Shishkina E.V., Gurviсh V.B., Katsnelson B.A. Some aspects of metal oxide nanoparticles toxicity assessment on cell cultures as exemplified by NiO and Mn3O4. Toxicological Review. 2017;(5):35-43. (In Russ.)

Просмотров: 27


ISSN 0869-7922 (Print)