Preview

Toxicological Review

Advanced search

Some aspects of metal oxide nanoparticles toxicity assessment on cell cultures as exemplified by NiO and Mn3O4

https://doi.org/10.36946/0869-7922-2017-5-35-43

Abstract

Comparative and combined damaging actions of NiO and Mn3O4 anoparticles were estimated on cultures of different established human cell lines. It was found out that the addition of the fetal bovine serum (FBS) to the culture media ,used in the investigation, renders NiO-NPs and, to even a greater extent, Mn3O4-NPs exponentially soluble while without FBS their dissolution was extremely low. Along with it, sedimentation of those MeO-NPs caused by their aggregation noticeably slowed down in the presence of the same FBS. The dependence of cell damage on the MeO-NPs concentration was found out, at a higher cytotoxicity of Mn3O4-NP as compared to NiO-NP. Thus, comparative assessment of NPs non-specific toxicity previously obtained in animal experiments was reproduced in the «in vitro» tests. However, with respect to manganese-specific brain damage «in vivo» discovered previously in sub-chronic intoxication with the same MeO-NPs, the present «in vitro» experiment on neurons only showed a certain enhancing effect of Mn3O4-NP on the action of NiO-NP, but the role of NiO-NP in the combination prevailed.

About the Authors

I. А. Minigalieva
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


T. V. Bushueva
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


V. G. Panov
Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences
Russian Federation


A. N. Varaksin
Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences
Russian Federation


V. Ya. Shur
School of Natural Sciences and Mathematics, the Ural Federal University
Russian Federation


E. V. Shishkina
School of Natural Sciences and Mathematics, the Ural Federal University
Russian Federation


V. B. Gurviсh
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


B. A. Katsnelson
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


References

1. katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B, Loginova N.V., Minigalieva I.A. et al. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview) . International J. Nanomedicine. 2015; 10: 3013-3029

2. Chen Q., Xue Y., Sun J. Kupffer cellmediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed. 2013; 8, 129–1140.

3. Horie M., Fukui H., Nishio k., Endoh S., kato H., Fujita k. et al. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health. 2011; 53: 64-74.

4. Privalova L.I., katsnelson B.A., Varaksin A.N., Panov V.G., Balesin S.L. The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology. 2016; 370: 78-85

5. Кацнельсон Б. А., Минигалиева И. А., Привалова Л. И., Сутункова М. П., Гурвич В. Б., шур В. Я. и др. Реакция глубоких дыхательных путей крысы на однократное интратрахеальное введения наночастиц оксидов никеля и марганца или их комбинации и её ослабление биопротекторной премедикацией. Токс. Вестник. 2014; 6: 8-14/ Katsnelson B.A., Minigalieva I.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y. et al. Lower airways response to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pretreatment. Toxicological Review, 2014; 6 (129): 8-14( in Russian).

6. katsnelson B.A., Minigalieva I.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B. et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem. Toxicol. 2015a; 86: 351-364

7. Pietruska J. R., Liu X. , Smith A., McNeil k., Weston P., Zhitkovich A., Hurt R., kane A. B. Bioavailability, intracellular mobilization of nickel, and HIF-1 alpha activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 2011; 124: 138-148.

8. Ahamed M. , Ali D., Alhadlaq H. A., Akhtar M. J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2), Chemosphere. 2013; 93: 2514-2522.

9. Duan W. X., He M. D., Mao L., Qian F. H. , Li Y. M., Pi H. F. et al. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2015; 286(2):80-91.

10. Hussain S.M., Javorina A.k., Schrand A.M., Duhart E.M., Ali S.F., Schlager J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sciences. 2006; 92: 456-463

11. Choi J.Y, Lee S.H., Na H.B., An K., Hyeon T., Seo T.S. In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng. 2010; 33: 21-30

12. Ivask A., Titma T., Visnapuu M., Vija H., kakinen A., Sihtmae M. et al. Toxicity of 11 metal oxide nanoparticles to three Mammalian cell types in vitro. Curr Top Med Chem. 2015; 15:1914-1929.

13. Khan S., Ansari A.A., Khan A.A., Abdulla M., Al-Obeed O., Ahmad R. In vitro evaluation of anticancer and biological activities of synthesized manganese oxide nanoparticles. Med. Chem. Commun. 2016; 7: 1647-1653

14. Alarifi S., Ali D., Alkahtani S. Oxidative stress-Induced DNA damage by manganese dioxide nanoparticles in human neuronal cells. Hindawi BioMed Research International, 20Vol. 2017, Article ID 5478790, 10 pages

15. Chanput W., Peters V., Wichers H. THP-1 and U937 Cells. Chapter 14 of “The impact of food bioactives on health:in vitro and ex vivo models” (Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H.,Eds., Springer International Publishing), 2015; 147-159

16. kovalevich J., Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol. 2013; 1078: 9-21

17. Sutunkova M.P., katsnelson B.A., Privalova L.I., Gurvich V.B., konysheva L.k., Shur V.Ya. et al. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology. 2016; 363: 19-28

18. Minigalieva I.A., katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y. et al. Attenuation of combined nickel (II) oxide and manganese (II,III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. of Mol. Sci. 2015; 16 (9): 22555-22583

19. Barber B.J., Schultz T.J., Randlett D.L. Comparative analysis of protein content in rat mesenteric tissue, peritoneal fluid, and plasma. Am J Physiol. 1990; 258: 714-718.

20. Stewart Hendrickson H., Fullington J. G. Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide . Biochemistry. 1965; 4: 1599–1605

21. del Pino P., Pelaz B., Zhang Q., Maffre P., Nienhaus G.U., Parak W. J. Protein corona formation around nanoparticles – from the past to the future. Mater. Horiz. 2014; 1: 301-313

22. Zhdanov V.P., Cho N.J. Kinetics of the formation of a protein corona around nanoparticles. Math Biosci. 2016; 282: 82-90

23. Sager T.M., Porter D. W., Robinson V.A., Lindsley W.G., Schwegler-Berry D.E. Castranova V. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity . Nanotoxicology. 2007; 1: 118-129

24. Bernas T., Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry. 2002; 47:236 –242

25. Meyer J.N., Leung M.k.L., Rooney J.P., Sendoel A., Hengartner M.O., kisbey G.E. at all. Mitochondria as a target of environmental toxicants. Toxicol Sci. 2013; 134: 1-17

26. kelley J.L., Rozek M.M., Suenram C.A., Schwartz C.J. Activation of human blood monocytes by adherence to tissue culture plastic surfaces. Exp.Mol. Pathol. 1987; 46(3): 266-78.

27. Privalova L.I., katsnelson B.A., Sharapova. N.Y., Kislitsina N.S. On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (an overview). Med.Lavoro. 1995; 86: 511-521

28. Minigalieva I.A., katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I. at all. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team.Toxicology Reports. 2017b; 4C. 194-201

29. ZhuY., Zhang J., Zeng Y. Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2012; 11: 350-358

30. khwanraj k., Phruksaniyom C., Madlah S., Dharmasaroja P. Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SHSY5Y neuroblastoma cells treated with MPP+. Neurology Research International, 2015: article ID 734703


Review

For citations:


Minigalieva I.А., Bushueva T.V., Panov V.G., Varaksin A.N., Shur V.Ya., Shishkina E.V., Gurviсh V.B., Katsnelson B.A. Some aspects of metal oxide nanoparticles toxicity assessment on cell cultures as exemplified by NiO and Mn3O4. Toxicological Review. 2017;(5):35-43. (In Russ.) https://doi.org/10.36946/0869-7922-2017-5-35-43

Views: 620


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7922 (Print)