Preview

Токсикологический вестник

Расширенный поиск

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ТОКСИКОЛОГИЧЕСКИХ ЭКСПЕРИМЕНТОВ «ИН ВИВО» С НЕКОТОРЫМИ МЕТАЛЛИЧЕСКИМИ И МЕТАЛЛО-ОКСИДНЫМИ НАНОЧАСТИЦАМИ

Полный текст:

Аннотация

В статье обобщены основные результаты токсикологических экспериментов на крысах, проведенных авторами путём либо однократной интратрахеальной инстилляции, либо повторных внутрибрюшинных введений наночастиц (НЧ) серебра, золота, оксидов железа, меди, никеля и марганца в стабильных водных суспензиях без каких-либо химических добавок. Найдено, что эти НЧ значительно более токсичны как на клеточном, так и на органо-системном уровне по сравнению со своими микрометровыми и даже субмикронными двойниками. Однако зависимость органо-системной токсичности от размера частиц внутри нанометрового диапазона является неоднозначной, завися от взаимно переплетенных и часто противоположно направленных соотношений между собственно биологической агрессивностью конкретных НЧ, с одной стороны, и сложными механизмами управления их токсикокинетикой, с другой. Наши данные свидетельствуют о высокой активности лёгочного фагоцитоза отложившихся в дыхательных путях НЧ, что указывает на принципиальную возможность безопасных уровней экспозиции к ним. Рассматривается подход к установлению временных нормативов такого воздействия, основанный на 10-15-кратном снижении величин, установленных для соответствующих микрометровых промышленных аэрозолей.

Найдено, что на фоне действия адекватно составленной комбинации некоторых биологически активных агентов (включая пектин, поливитамин-полиминеральные препараты, некоторые аминокислоты и НЭЖК класса омега-3) системная токсичность и генотоксичность металлосодержащих НЧ могут быть заметно ослаблены.

Об авторах

Борис Александрович Кацнельсон
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

Д.м.н., профессор, заслуженный деятель науки РФ, заведующий отделом токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: bkaznelson@etel.ru 



Лариса Иванова Привалова
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

Д.м.н., профессор, заведующая лабораторией научных основ биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: privalova@ymrc.ru 



Марина Петровна Сутункова
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

К.м.н., заведующая лабораторией токсикологии внешней среды ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: marinasutunkova@yandex.ru 



Владимир Борисович Гурвич
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

Д.м.н., директор ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: gurvich@ymrc.ru



Ильзира Амировна Минигалиева
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

К.б.н., заведующая лабораторией промышленной токсикологии ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: ilzira-minigalieva@yandex.ru 



Надежда Владимировна Логинова
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

Научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: tushkann@yandex.ru 



Екатерина Петровна Киреева
ФБУН Екатеринбургский Медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий
Россия

К.м.н., старший научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург

e-mail: katerinakir@yandex.ru 



Владимир Яковлевич Шур
Институт естествознания Уральского Федерального Университета
Россия

Д.ф.-м.н. проф., директор Центра коллективного пользования Института естествознания УрФУ «Современные нанотехнологии», г. Екатеринбург

e-mail: vladimir.shur@usu.ru 



Екатерина Владимировна Шишкина
Институт естествознания Уральского Федерального Университета
Россия

К.ф.-м.н., старший научный сотрудник Центра коллективного пользования Института Естествознания УрФУ «Современные нанотехнологии», г. Екатеринбург

e-mail: ekaterina.shishkina@labfer.usu.ru 



Яков Борисович Бейкин
Городской клинико-диагностический центр
Россия

Д.м.н., проф., главный врач МУ «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: kdc_boss@mail.ru 



Светлана Владимировна Пичугова
Городской клинико-диагностический центр
Россия

К.м.н., специалист по электронной микроскопии МУ «Клинико-диагностический центр», 620142, г. Екатеринбург

e-mail: ekb-lem@mail.ru



Олег Германович Макеев
Уральский государственный медицинский университет
Россия

Д.м.н, проф., зав. лабораторией молекулярной генетики УГМУ, 620028, г. Екатеринбург

e-mail: arim@mail.ru



Ирина Евгеньевна Валамина
Уральский государственный медицинский университет
Россия

К.м.н., ведущий научный сотрудник ЦНИЛ УГМУ, 620028, г. Екатеринбург

e-mail: ivalamina@mail.ru 



Список литературы

1. Katsnelson B.A., Privalova L.I., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A. et al. Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent Eur J Occup Environ Med. 2010; 16: 47–63.

2. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S. et al. Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? Int J Occup Environ Health. 2010; 16: 508–524.

3. Katsnelson B.A., Degtyareva T.D., Minigalieva I.A., Privalova L.I., Kuzmin S.V., Yeremenko O.S. et al. Sub-chronic systemic toxicity and bio-accumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol. 2011; 30: 60–67.

4. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Gurvich V.B., Sutunkova M.P., Kireyeva E.P. et al. An approach to tentative reference levels setting for nanoparticles in the workroom air based on comparing their toxicity with that of their micrometric counterparts: A case study of iron oxide Fe3O4. ISRN Nanotechnol. 2012: 2012: 12.

5. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Khodos M.Y., Shur V.Y., Shishkina E.I. et al. Uptake of some metallic nanoparticles by, and their impact on pulmonary macrophages in vivo as viewed by optical, atomic force, and transmission electron microscopy. J Nanomed Nanotechnol. 2012; 3: 1–8.

6. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Tulakina L.G., Pichugova S.V., Beikin J.B. et al. The “in vivo” interaction between iron oxide Fe3О4 nanoparticles and alveolar macrophages. Bull Exp Biol Med. 2012; 152: 627–631.

7. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin J.B. et al. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int J Mol Sci. 2013; 14: 2449–2483.

8. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E. et al. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. Int J Mol Sci. 2014; 15: 12379-12406. doi:10.3390/ijms150712379

9. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.B. et al. Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of CopperContaining Nano-Scale Particles Int. J. Mol. Sci. 2014; 15: 21538-21553; doi:10.3390/ijms151121538

10. Кацнельсон Б. А., Минигалиева И. А., Привалова Л. И., Сутункова М. П., Гурвич В. Б., Шур В. Я., Шишкина Е. В., Вараксин А. Н., Панов В. Г. Реакция глубоких дыхательных путей крысы на однократное интратрахеальное введения наночастиц оксидов никеля и марганца или их комбинации и её ослабление биопротекторной премедикацией. Токсикологический Вестник. 2014; 6: 8- 14.

11. Zhu M.T., Feng W.Y., Wang B., Wang T.C., Gu Y.Q., Wang Y. et al. Comparative study of pulmonary responses to nanoand submicron ferric oxide in rats. Toxicol; 2008: 247:102-111.

12. Mahmoudi M., Simchi A., Milani A.S., Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2009; 336 (2): 510–518. https://doi.org/10.1016/j.jcis.2009.04.046

13. Mahmoudi M., Laurent S., Shokrgozar M.A., Hosseinkhani M. Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell “Vision” versus Physicochemical Properties of Nanoparticles. ACS Nano. 2011; 5 (9): 7263–7276. https://doi.org/10.1021/nn2021088

14. Naqvi S., Samim M., Abdin M.Z., Ahmed F.J., Maitra A.N., Prashant C.K. et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine. 2010; 5: 983 – 989. https://doi.org/10.2147/IJN.S13244

15. Wu X., Tan Y., Mao H., Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine. 2010; 5: 385-99.

16. Singh N., Jenkins G.S., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010; 1: 5358. https://doi.org/10.3402/nano.v1i0.5358

17. Soenen S.J., De Cuyper M., De Smedt S.C., Braeckmans K. Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol. 2012; 509: 195-224. https://doi.org/10.1016/B978-0-12-391858-1.00011-3

18. Liu G., Gao J., Ai H., Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013; 9(9-10): 1533-45. https://doi.org/10.1002/smll.201201531

19. Markides H., Rotherham M., El Haj A.J. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. J Nanomater. 2012; 2012: 614094. https://doi.org/10.1016/j.jcis.2009.04.046

20. Barhoumi L., Dewez D. Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris. BioMed Res Int. 2013; 2013: 647974. https://doi.org/10.1155/2013/647974

21. Ahamed M., Karns M., Goodson M., Rowe J., Hussain S.M., Schlager J.J. et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008; 233: 404–410.

22. Arora S., Jain J., Rajwade J.M., Paknikar K.M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol. 2009; 236: 310–318.

23. Trickler W.J., Lantz S.M., Murdock R.C., Schrand A.M., Robinson B.L., Newport G.D. et al. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain micro vessel endothelial cells. Toxicol Sci. 2010; 118: 160–170.

24. Li T., Albee B., Alemayehu M., Diaz R., Ingham L., Kamal S. et al. Comparative toxicity study of Ag, Au, AgAu bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem. 2010; 398: 689–700.

25. Park E-J., Bae E., Yi Y., Younghun K., Choi K., Lee S.H. et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nano-particles. Environ Toxicol Pharmacol. 2010; 30: 162–168.

26. Park M.V., Neigh A.M., Vermeulen J.P., de la Fonteyne L.J., Verharen H.W., Biede J.J. et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. J Biomater. 2011; 32: 9810–9817.

27. Choi J.E., Kim S., Ahn J.H., Youn P., Kang J.S., Park K. et al. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol. 2010; 100: 151–159.

28. Kim Y.S., Song M.Y., Park J.D., Song R.S., Ryu H.R., Chung Y.H. et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010; 7: 20.

29. Ahmadi F., Kordestany A.H. Investigation on silver retention in different organs and oxidative stress enzymes in male broiler fed diet supplemented with powder of nano silver. Am-Euras J Toxicol Sci. 2011; 3: 28–35.

30. Stebounova L.V., AdamcakovaDodd A., Kim J.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 2011; 8: 5.

31. Srivastava M., Singh S., Self W.T. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ Health Perspect. 2011; 120: 56–61.

32. Hackenberg S., Scherzed A., Kessler M., Hummel S., Technau A., Froelich E. et al. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cell. Toxicol Lett. 2011; 201: 27–33.

33. Foldbjerg R., Dang D.A., Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011; 85: 743–750.

34. Kim H.R., Kim M.J., Lee S.Y., Oh S.M., Chung K.H. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res. 2011; 726: 129–135.

35. Li Y., Chen D.H., Yan J., Chen Y., Mittelststaedt R.A., Zhang Y. et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res. 2012; 745: 4–10.

36. Tavares P., Balbino F., martins de Oliveira H., Fugundes G.E., Vanancio M., Ronconi J.V.V. et al. Evaluation of genotoxic effect of silver nanoparticles (Ag-NPs) in vitro and in vivo. J Nanopart Res. 2012; 14: 791.

37. Asare N., Instanes C., Sandberg W.J., Refsnes M., Schwarze P., Kruszewski M. et al. Citotoxic and genotoxic effects of silver nanoparticles in testicular cell. Toxicology. 2012; 291: 65–72.

38. Flower N.A.L., Brabu B., Revathy M., Gopalakrishnan C., Raja S.V.K., Murugan S.S. et al. Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res. 2012; 742: 61–65.

39. Karlsson H., Gliga A.R., Kohonen P., Wallbergb P., Fadeel B. Genotoxicity and epigenetic effects of silver nanoparticles. Toxicol Lett. 2012; 211(Supplement): S40.

40. Lim D-H., Jang J., Kim S., Kang T., Lee K., Choi I.H.. The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress in human macrophages using cDNA microarray analysis. Biomaterials. 2012; 33: 4690- 4699.

41. Beer C., Foldbjerg R., Hayashi Y., Sutherland D.S., Autrup H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol Lett. 2012; 208: 286–292.

42. Cronholm P., Karlsson H.L., Hedberg J., Lowe T.A., Winnberg L., Elihn K. et al. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small. 2013; 8: 970–982.

43. Gomes T., Araújo O., Pereira R., Almeida A.C., Cravo A., Bebianno M.J. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res. 2013; 84: 51–59.

44. Ahamed M., AlSalhi M.S., Siddiqui M.K.J. Silver nanoparticles applications and human health. Clin Chim Acta. 2010; 411: 1841–1184.

45. Sanjay Singh, D’Britto V., Prabhune A.A., Ramana C.V., Dhawan A., Prasad B.L.V. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem. 2011; 34: 294–301.

46. Bakri S.J., Pulido J.S., Mukerjee P., Marler R.J., Mukhopadhyay D. Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina 2008; 28: 147–149.

47. Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G. et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009; 5: 2067–2076.

48. Chen Y-Sh., Hung Y-Ch., Huang G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009; 4: 858–864.

49. Balasurbamanian S.K., Jittiwat J., Manikandan J., Ong Ch-N., Yu L.E., Ong W-Y. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials. 2010; 31: 2034–2042.

50. Zhang Q., Hitchins V.M., Schrand A.M., Hussain S.M., Goering P.L. Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of proinflammatory mediators. Nanotoxicology. 2010; 5: 284–295.

51. Li J.J., Lo S.L., Ng C.T., Gurung R.L., Hartono D., Hande M.P. et al. Genomic instability of gold nanoparticle treated human lung fibroblast cells. Biomaterials. 2011; 32: 5515–5523.

52. Trickler W.J., Lantz S.M., Murdock R.C., Newport G.D., Oldenburg S.J., Paule M.G. et al. Brain microvessel endothelial cells responses to gold microparticles: In vitro pro-inflammatory mediators and permeability. Nanotoxicology. 2011; 5: 479–492.

53. Glazer E.S., Zhu C., Hamir A.N., Borne A., Thompson C.S., Curley S.A. Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology. 2011; 5: 459–468.

54. Mustafa T., Watanabe F., Monroe W., Mahmood M., Xu Y., Saeed L.M. et al. Impact of gold nanoparticle concentration on their cellular uptake by MC3T3-E1 mouse osteoblastic cells as analyzed by transmission electron microscopy. J Nanomed Nanotechnol. 2011; 2: 1–8.

55. Rudolf R., Friedrich B., Stopic S., Anzel I., Tomic S., C’Olic M. Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis. J Biomater Appl. 2012; 26: 595–612.

56. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 2012; 41: 2256–2282.

57. Choi S.Y., Jeong S., Jang S.H., Park J., Ock K.S., Lee S.Y. et al. In vitro toxicity protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. Toxicol In Vitro. 2012; 26: 229–237.

58. Shulz M., Ma-Hock L., Brill S., Strauss V., Treumann S., Gröters S. et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res. 2012; 745: 51–57.

59. Богословская О. А., Сизова Е. А., Полякова В. С., Мирошников С. А., Лейпунский И. О., Ольховская И. П., Глущенко Н. Н. Изучение безопасности введения наночастиц меди с различными физико-химическими характеристиками в организм животных. Вестник ОГУ. 2009; 2: 124 – 127

60. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 2006; 25: 109–120.

61. Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008; 21: 1726–1732.

62. Studer A.M., Limbach L.K., van Duc L., Krumeich F., Athanassiou E.K., Gerber L.C. et al. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett. 2010; 1: 169–174.

63. Bondarenko O., Ivask A., Käkinen A., Kahru A.. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut. 2012; 169: 81–89.

64. Pang C., Selck H., Misra S.K., Berhanu D., Dybowska A., ValsamiJones E. et al. Effects of sedimentassociated copper to the deposit-feeding snail, Potamopyrgus antipodarum: A comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat Toxicol. 2012; 15: 114–122.

65. Magaye R., Zhao J., Bowman L., Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med. 2012; 4: 551–561.

66. Alarifi S., Ali D., Verma A., Alakhtani S., Ali B.A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol. 2013; 32: 296–307.

67. Xu J., Li Z., Xu P., Xiao L., Yang Z. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch Toxicol. 2013; 87: 1067–1073.

68. Cuillel M., Chevallet M., Charbonnier P., Fauquant C., Pignot-Paintrand I., Arnaud J. et al. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale. 2014; 16: 1707–1715.

69. Zhang Q., Yukinori K., Sato K., Nakakuki K., Koyahama N., Donaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: Role of free radicals. J. Toxicol. Environ. Health. 1998; 53: 423–438.

70. Zhang Q., Yukinori K., Zhu X., Sato K., Mo Y., Kluz T., Domaldson K. Comparative toxicity of standard nickel and ultrafine nickel after intratracheal instillation. J. Occip. Health. 2003; 45: 23–30.

71. Magaye R. and Zhao. Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environmental Toxicology and Pharmacology. 2012; 34(3): 644–650.

72. MorimotoY., Hirohashi M., Ogami A., Oyabu T., Myojo T., Hashiba M. et. Al. Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. Journal of Occupational Health. 2011; 293-295

73. Capasso L., Camatini M., Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett. 2014: Apr7: 226(1): 28-34. https://doi.org/10.1016/j.toxlet.2014.01.040

74. Saber M., Hussain S.M., Javorina A.K., Schrand A.M., Duhart H.M. et. аl. The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion. Tox Sciences. 2006; 92(2): 456–463

75. Singh S.P., Kumari M., Kumari S.I., Rahman M.F., Mahboob M., Grover P. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013; Oct 24; 33(10):1165-1179.

76. Зайцева Н. В., Землянова М. А., Звездин В. Н., Саенко Е. В., Тарантин А. В., Махмудов Р. Р., Лебединская О. В., Мелехин С. В., Акафьева Т. И. Токсиколого-гигиеническая оценка безопасности нано- и микродисперсного оксида марганца (III, IV). Вопросы питания. 2012; 5: 13-19

77. Katsnelson B.A., Konysheva L.K., Privalova L.Y., Morosova K.I. Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats. Brit J Ind Med. 1992; 49:172-181.

78. Geiser M., Kreyling W.G. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010; 7(2): https://doi.org/10.1186/1743-8977-7-2

79. Task Group. ICRP Publication 66: Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann ICRP. 1994; 24: 1–482.

80. Kreyling W.G., Geiser M. Dosimetry of inhaled nanoparticles. In: Marijnissen JC, Gradon L, editors. Nanoparticles in Medicine and Environment, Inhalation and Health Effects. Berlin, Germany: Springer. 2009; 145-173.

81. Fröhlich E., Salar-Behzadi S. Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 2014; 15: 4795–4822.

82. Sadauskas E., Wallin H., Stolenberg M., Vogel U., Doering P., Larsen A. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007; 4: 10-16. https://doi.org/10.1186/1743-8977-4-10

83. Lasagna-Reeves C., GonzalezRomero D., Barria M.A., Olmedo I., Clos A., Sadagopa Ramanujam V.M. et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 2010; 393: 649–655.

84. Donaldson K., Stone V., Tran C.K., Kreyling W., Borm P.J. Nanotoxicology (editorial). Occup Environm Med. 2004; 61: 727–728.

85. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studied of ultrafine particles. Envitonm Health Persp. 2005; 113: 823-839.

86. Fadeel B. Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly. 2012; 142:w13609

87. Kilburn K.H. Alveolar clearance of particles. A bullfrog lung model. Arch Environ Health. 1969; 18:556-563.

88. Renwick L., Brown D., Clouter K., Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004; 61: 442-447.

89. Stoeger T., Reinhard C., Takenaka Sh., Schroeppel A., Karg E., Ritter B. et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect. 2006; 114(3): 328-333.

90. Grassian V.H., O’Shaughnessy P.T., Adamcakova-Dodd A., Pettibone J.M., Thorne P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007; 115: 397–402.

91. Sager T.M., Porter D.W., Robinson V.A., Lindsley W.G., Schwegler-Berry V.A., Castranova V. Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity. Nanotoxicol. 2007; 1: 118-129.

92. Warheit D.B., Reed K.L., Sayes C.M. A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicol. 2009; 3: 181 – 187.

93. Privalova L.I., Katsnelson B.A., Osipenko A.B., Yushkov B.H., Babushkina L.G. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. Environm Health Perspect. 1980; 35: 205-218.

94. Privalova L.I., Katsnelson B.A., Yelnichnykh L.N. Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels. Brit J Ind Med. 1987; 44: 228-235.

95. Katsnelson B.A., Privalova L.I. Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles. Environ Health Perspect. 1984; 55: 313-325.

96. Katsnelson B.A., Konyscheva L.K., Sharapova N.Y., Privalova L.I. Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model. Occup Environ Med. 1994; 51:173-180.

97. Katsnelson B.A., Konysheva L.K., Privalova L.Y., Sharapova N.Y. Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles. Inhalat Toxicol. 1997; 9: 703-715.

98. Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. J Curr Drug Metab. 2013; 14: 976–988.

99. Manke A., Wang L., on Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Review article. BioMed Research International. 2013; 2013: Article ID 942916. 15

100. Privalova L.I., Katsnelson B.A., Sharapova N.Y., Kislitsina N.S. On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis. Med Lav. 1995; 86: 511-521.

101. Yokel R.A., MacPhail R.C. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol. 2011; 6: 7. https://doi.org/10.1186/1745-6673-6-7

102. Murashov V., Shulte P., Geraci C., Howard J. Regulatory approaches to worker protection in nanotechnology industry in the USA and European Union. Industr Health. 2011; 49: 280-296.

103. Grosco A., Petri-Fink A., Magrez A., Rediker M., Meyer T. Management of nanomaterials safety in research environment. Part Fibre Toxicol. 2010; 7: 40. https://doi.org/10.1186/1743-8977-7-402010

104. van Broekhuizen P. Dealing with uncertainties in the nanotech workplace practice: making the precautionary approach operational. J Biomed Nanotechnol. 2011; 7: 15-17.

105. CDC and NIOSH. Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. US Department of Health and Human Services. NIOSH 2011.

106. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Minigalieva I.A. Loginova N.V., et al. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). International J. Nanomedicine. 2015.

107. Katsnelson B.A., Privalova L.I., Gurvich V.B., Kuzmin S.V., Kireyeva E.P., Minigalieva I.A. et al. Enhancing Population’s Resistance to Toxic Exposures as an Auxilliary Tool of Decreasing Environmental and Occupational Health Risks (a SelfOverview). Journal of Environmental Protection. 2014; 5: 1435-1449

108. Кацнельсон Б. А., Привалова Л. И. Гурвич, В.Б, Кузьмин С. В.,.Киреева Е.П, И.А.Минигалиева и др. О роли биопрофилактиики в системе мер управления профессиональными и экологически обусловленными химическими рисками для здоровья населения. Токсикологический Вестник. 2015; 1: 10-21.


Для цитирования:


Кацнельсон Б.А., Привалова Л.И., Сутункова М.П., Гурвич В.Б., Минигалиева И.А., Логинова Н.В., Киреева Е.П., Шур В.Я., Шишкина Е.В., Бейкин Я.Б., Пичугова С.В., Макеев О.Г., Валамина И.Е. ОСНОВНЫЕ РЕЗУЛЬТАТЫ ТОКСИКОЛОГИЧЕСКИХ ЭКСПЕРИМЕНТОВ «ИН ВИВО» С НЕКОТОРЫМИ МЕТАЛЛИЧЕСКИМИ И МЕТАЛЛО-ОКСИДНЫМИ НАНОЧАСТИЦАМИ. Токсикологический вестник. 2015;(3):26-39.

For citation:


Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Minigalieva I.A., Loginova N.V., Kireyeva E.P., Shur V.Ya., Shishkina E.V., Beikin Ya.B., Pichugova S.V., Makeyev O.H., Valamina I.E. MAIN RESULTS OF TOXICOLOGICAL EXPERIMENTS IN VIVO WITH SOME METAL AND METAL OXIDES NANOPARTICLES. Toxicological Review. 2015;(3):26-39. (In Russ.)

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-7922 (Print)