

Comparative analysis of accumulation of microplastics of various sizes in the rat brain based on an automated morphometric approach
https://doi.org/10.47470/0869-7922-2025-33-3-158-171
Abstract
The aim of the study was to compare the accumulation of plastic microparticles of different sizes (100, 500 and 1000 nm) in the brain of rats using a descriptive and quantitative approach.
Material and methods. Female Wistar rats, 12 individuals divided into 4 groups, were intracardiacally injected with a suspension of fluorescent polystyrene microparticles (100, 500 and 1000 nm in diameter) or a saline solution (Control) with a volume of 50 µl. The accumulation of microplastics in brain tissues was assessed using fluorescence microscopy using a descriptive approach and a computer program for quantifying the content of microparticles and their conglomerates. The data was analyzed using the Bootstrap method with the Holm–Bonferroni correction, the significance of the differences was determined at p < 0.05.
Results. It was found that fluorescent microparticles of plastic accumulate mainly in the cerebral cortex, and the MP 1000 group showed a greater number of clearly defined conglomerates compared to the MP 100 and MP 500 groups. The density of plastic microparticles, estimated using an automated morphometric approach, was also higher in the experimental groups compared with the control, especially in the MP 1000 group.
Limitations. The study was limited to studying the distribution of plastic microparticles of three sizes in a toxicological experiment on a single animal species (laboratory rat). The phase of the sexual cycle of female rats was not taken into account.
Conclusion. The integration of approaches allows for a deeper understanding of the dynamics of microparticle accumulation: a descriptive approach shows the ability of particles to penetrate the blood–brain barrier (BBB), while a quantitative approach provides data on the content and distribution of particles and conglomerates.
About the Authors
Yulia V. RyabovaRussian Federation
Nadezhda Yu. Khusnutdinova
Russian Federation
Eldar R. Kudoyarov
Russian Federation
Yana V. Valova
Russian Federation
Guzel F. Mukhammadieva
Russian Federation
Aidar R. Akhmadeev
Russian Federation
Denis O. Karimov
Russian Federation
References
1. Золотова Н.А., Джалилова Д.Ш., Цветков И.С., Сентябрева А.В., Макарова О.В. Морфологическая характеристика внутренних органов мышей при длительном потреблении микропластика. Клиническая и экспериментальная морфология. 2023; 12: 82–92.
2. Song Z., Wu H., Fang X., Feng X., Zhou L. The cardiovascular toxicity of polystyrene microplastics in rats: based on untargeted metabolomics analysis. Front Pharmacol. 2024; 10(15): 1336369. https://doi.org/10.3389/fphar.2024.1336369
3. Farag A.A., Youssef H.S., Sliem R.E., El Gazzar W.B., Nabil S., Mokhtar M.M., Marei Y.M., Ismail N.S., Radwaan S.E., Badr A.M., Sayed A.E.H. Hematological consequences of polyethylene microplastics toxicity in male rats: Oxidative stress, genetic, and epigenetic links. Toxicology. 2023; 492(11): 153545.
4. Zhang Q., Lang Y., Tang X., Cheng W., Cheng Z., Rizwan M., Xie L., Liu Y., Xu H., Liu Y. Polystyrene microplastic-induced endoplasmic reticulum stress contributes to growth plate endochondral ossification disorder in young rat. Environ Toxicol. 2024; 39(6): 3314–29. https://doi.org/10.1002/tox.24182
5. Tian L., Zhang Y., Chen J., Liu X., Nie H., Li K., Liu H., Lai W., Shi Y., Xi Z., Lin B. Effects of nanoplastic exposure during pregnancy and lactation on neurodevelopment of rat offspring. J Hazard Mater. 2024; 474: 134800. https://doi.org/10.1016/j.jhazmat.2024.134800
6. Mercer G.V., Harvey N.E., Steeves K.L., Schneider C.M., Sled J.G., Macgowan C.K., Baschat A.A., Kingdom J.C., Simpson A.J., Simpson M.J., Jobst K.J., Cahill L.S. Maternal exposure to polystyrene nanoplastics alters fetal brain metabolism in mice. Metabolomics. 2023; 19(12): 96. https://doi.org/10.1007/s11306-023-02061-3
7. Prüst M., Meijer J., Westerink R.H.S. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol. 2020; 17: 24. https://doi.org/10.1186/s12989-020-00358-y
8. Rafiee M., Dargahi L., Eslami A., Beirami E., Jahangiri-rad M., Sabour S., Amereh F. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere. 2018; 193: 745–53. https://doi.org/10.1016/j.chemosphere.2017.11.076
9. Song S., van Dijk F., Vasse G.F., Liu Q., Gosselink I.F., Weltjens E., Remels A.H.V., de Jager M.H., Bos S., Li C., Stoeger T., Rehberg M., Kutschke D., van Eck G.W.A., Wu X., Willems S.H., Boom D.H.A., Kooter I.M., Spierings D., Wardenaar R., Cole M., Nawijn M.C., Salvati A., Gosens R., Melgert B.N. Inhalable Textile Microplastic Fibers Impair Airway Epithelial Differentiation. Am J Respir Crit Care Med. 2024; 209(4): 427–43. https://doi.org/10.1164/rccm.202211-2099OC
10. da Silva Brito W.A., Mutter F., Wende K., Cecchini A.L., Schmidt A., Bekeschus S. Consequences of nano and microplastic exposure in rodent models: the known and unknown. Part Fibre Toxicol. 2022; 19(1): 28. https://doi.org/10.1186/s12989-022-00473-y
11. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 2020; 702: 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
12. Yin K., Wang D., Zhang Y., Lu H., Hou L., Guo T., Zhao H., Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. J Hazard Mater. 2023; 452: 131236. https://doi.org/10.1016/j.jhazmat.2023.131236
13. Guševac Stojanović I., Drakulić D., Todorović A., Martinović J., Filipović N., Stojanović Z. Acute Toxicity Assessment of Orally Administered Microplastic Particles in Adult Male Wistar Rats. Toxics. 2024; 12(3): 167. https://doi.org/10.3390/toxics12030167
14. Deng Y., Zhang Y., Lemos B., Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017; 7: 46687. https://doi.org/10.1038/srep46687
15. Репина Э.Ф., Хмель А.О., Каримов Д.Д., Рябова Ю.В., Каримов Д.О., Кулагин Е.А., Ахмадеев А.Р., Кудояров Э.Р. Распространение микрочастиц пластика размером 1000 нанометров в жизненно важных органах при однократном введении лабораторным животным. Международный журнал прикладных и фундаментальных исследований. 2025; 2: 40–4. https://doi.org/10.17513/mjpfi.13695
16. Репина Э.Ф., Каримов Д.О., Кудояров Э.Р., Каримов Д.Д., Ахмадеев А.Р., Гизатуллина А.А., Рябова Ю.В., Хмель А.О. Предварительная оценка распределения микрочастиц пластика размером 500 нм в органах крыс при однократном поступлении. Медицина труда и экология человека. 2025; 1: 113–25. https://doi.org/10.24412/2411-3794-2025-10109
17. Kannan K., Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne). 2021; 12: 724989. https://doi.org/10.3389/fendo.2021.724989
18. Hillery A.M., Jani P.U., Florence A.T. Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target. 1994; 2(2): 151–6. https://doi.org/10.3109/10611869409015904
19. Braakhuis H.M., Park M.V., Gosens I., De Jong W.H., Cassee F.R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014; 1: 18. https://doi.org/10.1186/1743-8977-11-18
20. Powell J.J., Faria N., Thomas-McKay E., Pele L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010; 34(3): J226–33. https://doi.org/10.1016/j.jaut.2009.11.006
21. Carr K.E., Smyth S.H., McCullough M.T., Morris J.F., Moyes S.M. Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem. 2012; 46(4): 185–252. https://doi.org/10.1016/j.proghi.2011.11.001
22. Каримов Д.О, Рябова Ю.В, Ахмадеев А.Р. Хуснутдинова Н.Ю, Кудояров Э.Р., Зайдуллин И.И. Программа для детекции микропластика на микроскопических снимках. Патент РФ № RU2024685872; 2024
23. Romano J.P., Wolf M. Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and the Bootstrap. Predictive Econometrics and Big Data. 2018; 753: 78–94. https://doi.org/10.1007/978-3-319-70942-0_4
24. Shan S., Zhang Y., Zhao H., Zeng T., Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere. 2022; 298: 134261. https://doi.org/10.1016/j.chemosphere.2022.134261
25. Lee C.W., Hsu L.F., Wu I.L., Wang Y.L., Chen W.C., Liu Y.J., Yang L.T., Tan C.L., Luo Y.H., Wang C.C., Chiu H.W., Yang T.C., Lin Y.Y., Chang H.A., Chiang Y.C., Chen C.H., Lee M.H., Peng K.T., Huang C.C. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J Hazard Mater. 2022; 430: 128431. https://doi.org/10.1016/j.jhazmat.2022.128431
26. Gaspar L., Bartman S., Coppotelli G., Ross J.M. Acute Exposure to Microplastics Induced Changes in Behavior and Inflammation in Young and Old Mice. Int J Mol Sci. 2023; 24(15): 12308. https://doi.org/10.3390/ijms241512308
27. Jin H., Yang C., Jiang C., Li L., Pan M., Li D., Han X., Ding J. Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. Environ Health Perspect. 2022; 130(10): 107002. https://doi.org/10.1289/EHP10255
28. Amato-Lourenço L.F., Dantas K.C., Júnior G.R., Paes V.R., Ando R.A., de Oliveira Freitas R., da Costa O.M.M.M., Rabelo R.S., Soares Bispo K.C., Carvalho-Oliveira R., Mauad T. Microplastics in the Olfactory Bulb of the Human Brain. JAMA Netw Open. 2024; 7(9): e2440018. https://doi.org/10.1001/jamanetworkopen.2024.40018
29. Liang B., Huang Y., Zhong Y., Li Z., Ye R., Wang B., Zhang B., Meng H., Lin X., Du J., Hu M., Wu Q., Sui H., Yang X., Huang Z. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice. J Hazard Mater. 2022; 430: 128459. https://doi.org/10.1016/j.jhazmat.2022.128459
30. Yang Q., Dai H., Cheng Y., Wang B., Xu J., Zhang Y., Chen Y., Xu F., Ma Q., Lin F., Wang C. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep. 2023; 42(4): 112346. https://doi.org/10.1016/j.celrep.2023.112346
Review
For citations:
Ryabova Yu.V., Khusnutdinova N.Yu., Kudoyarov E.R., Valova Ya.V., Mukhammadieva G.F., Akhmadeev A.R., Karimov D.O. Comparative analysis of accumulation of microplastics of various sizes in the rat brain based on an automated morphometric approach. Toxicological Review. 2025;33(3):158-171. (In Russ.) https://doi.org/10.47470/0869-7922-2025-33-3-158-171