Preview

Toxicological Review

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Dynamics of short-chain fatty acids and aromatic microbial metabolites in rat blood serum during sulfur mustard intoxication

https://doi.org/10.47470/0869-7922-2025-33-3-189-196

Abstract

Introduction. The previously obtained data indicate pronounced critical disturbances of enteral homeostasis (barrier, motor-evacuation, secretory-absorption and digestive disfunctions of the intestine) during sulfur mustard intoxication. Obviously, against this background, the habitat of the intestinal microbiota changes significantly, which can lead to significant changes in the content of short-chain fatty acids and aromatic microbial metabolites both at the local level and in the systemic bloodstream.
The aim of the work is to study the metabolomic profile of short-chain fatty acids and aromatic microbial metabolites in the blood serum of rats in the dynamics of sulfur mustard intoxication.
Material and methods. Four experimental groups of rats were intramuscularly administered sulfur mustard at a dose of 1.0 LD50. On days 1, 2, 3 and 4 after the introduction of the toxicant, the quantitative content of acetic, propionic, butyric, valerianic, 4-hydroxyphenylacetic, phenylpropionic, 3-phenyllactic and p-hydroxyphenyllactic acids was determined in the blood serum by High performance liquid chromatography with mass spectrometry (HPLC-MS). Similar indicators were determined in the blood serum of the control group of animals.
Results. A decrease in the content of all studied short-chain fatty acids was recorded starting from the first day after the introduction of the toxicant in comparison with similar indicators of the control group. Analysis of the quantitative content of aromatic microbial metabolites revealed an increase in serum concentrations of hydroxyphenylacetic and phenyllactic acids, most pronounced by the 3rd–4th day of sulfur mustard intoxication.
Limitations. Analytical studies of samples do not apply to environmental objects, and the methodological possibilities of their interpretation are limited by the chemical nature of analytes.
Conclusion. This paper presents for the first time the results of studying the metabolomic profile (the content of short-chain fatty acids and aromatic microbial metabolites) of rat blood serum in the dynamics of sulfur mustard intoxication. Analysis of the obtained results allows us to speak about pronounced microecological changes in the gastrointestinal tract after the introduction of sulfur mustard, and a decrease in the content of short-chain fatty acids, with a simultaneous increase in the level of hydroxyphenylacetic and phenyllactic acids, may have an important patho- and thanatogenetic significance.

About the Authors

Sergej P. Sidorov
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


Olga I. Aleshina
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


Dmitriy V. Tsoy
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


Aleksandr S. Nikiforov
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


Ekaterina B. Zhakovko
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


Andrey A. Kuzmin
State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
Russian Federation


References

1. Wishart D., Oler E., Peters H., Guo A., Girod S., Han S. at al. MiMeDB: the Human Microbial Metabolome Database. Nucleic Acids Res. 2023; 51: D611–20. https://doi.org/10.1093/nar/gkac868

2. Fernandes J., Su W., Rahat-Rozenbloom S., Wolever T., Comelli E. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes. 2014; 4, June.: e121. https://doi.org/10.1038/nutd.2014.23

3. Maslowski K.M. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461: 1282–6. https://doi.org/10.1038/nature08530

4. Ардатская М.Д. Пробиотики, пребиотики и метабиотики в клинической практике: руководство для врачей. М.: ГЭОТАР-Медиа; 2024. https://doi.org/10.33029/9704-8162-2-PRO-2024-1-264

5. Белобородова Н.В. Мороз В.В., Осипов А.А., Бедова А.Ю., Оленин А.Ю., Гетсина М.Л. и соавт. Нормальный уровень сепсис-ассоциированных фенилкарбоновых кислот в сыворотке крови человека. Биохимия. 2015; 80(3): 449–55. https://doi.org/10.1134/s0006297915030128

6. Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Микробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74(12): 1657–63. https://doi.org/10.1134/s0006297909120086

7. Белобородова Н.В., Оленин А.Ю., Ходакова А.С., Черневская Е.А., Хабиб О.Н. Происхождение и клиническое значение низкомолекулярных фенольных метаболитов в сыворотке крови человека. Анестезиология и реаниматология. 2012; 5: 65–72

8. Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8(4): 42. https://doi.org/10.15360/1813-9779-2012-4-42

9. Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15(6): 62–79. https://doi.org/10.15360/1813-9779-2019-6-62-79

10. Черневская, Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018; 14(5): С96–С119. https://doi.org/10.15360/1813-9779-2018-5-96-119

11. Белобородова Н.В., Мороз В.В., Бедова А.Ю., Осипов А.А., Саршор Ю.Н., Черневская Е.А. Участие ароматических микробных метаболитов в развитии тяжелой инфекции и сепсиса. Анестезиология и реаниматология. 2016; 61(3): 202–8. https://doi.org/10.18821/0201-7563-2016-61-3-202-208

12. Сидоров С.П., Булка К.А., Чепур С.В., Алексеева И.И., Владимирова О.О., Кузьмин А.А. и др. Структурные изменения тонкой кишки при моделировании ингаляционного поражения сернистым ипритом. Медлайн.ру. 2023; 24(36): 473–87. https://www.medline.ru/public/art/tom24/art36.html

13. Сидоров С.П., Сергеев А.А., Чепур С.В., Алексеева И.И., Владимирова О.О., Жаковко Е.Б. и др. Морфофункциональные изменения желудочно-кишечного тракта при интоксикации сернистым ипритом. Вестник Уральской медицинской академической науки. 2022; 19 (2): 142–62. https://doi.org/10.22138/2500-0918-2022-19-2-142-162

14. Сидоров С.П., Булка К.А., Чепур С.В., Алексеева И.И., Владимирова О.О., Кузьмин А.А. и др. Характеристика синдрома диареи при ипритной интоксикации у крыс. Медлайн.ру. 2023; 24(56): 760–70. https://www.medline.ru/public/art/tom24/art56.html

15. European Convention for the Protection of Vertebrate Animals used for experimental and other scientific purposes. Strasburg: Council of Europe. 1986.

16. Гизингер О.А. Роль коротко- и среднецепочечных жирных кислот в реакциях гомеостатического регулирования. Терапевт. 2021; 9: 45–51. https://doi.org/10.33920/med-12-2109-05

17. Roediger W.E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980; 21(9): 793–8. https://doi.org/10.1136/gut.21.9.793

18. Ардатская М.Д., Бельмер С.В., Добрица В.П., Захаренко С.М., Лазебник Л.Б., Минушкин О.Н. и др. Дисбиоз (дисбактериоз) кишечника: современное состояние проблемы, комплексная диагностика и лечебная коррекция. Экспериментальная и клиническая гастроэнтерология 2015; 117(5): 13–50.

19. Fons M., Gomez A., Karjalainen T. Mechanisms of colonization and colonization resistance of the digestive tract. Microbiol. Ecol. Health Dis. 2000; 2: 240–6. https://doi.org/10.1080/089106000750060495

20. Venegas D.P., Fuente M.D., Landskron G., Gonzalez M.G., Quera R., Dijkstra G., et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00277

21. Nastasi C., Candela M., Bonefeld C.M., Geqsler C., Hansen M., Krejsgaard T., et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 2015; 5: 16148. https://doi.org/10.1038/srep16148

22. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., et al. Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262–7. https://doi.org/10.1126/science.1223813

23. Nithin K.K., Patil P., Bhandary S.K., Haridas V., Kumari N.S., Sarathkumar E., et al. Is butyrate a natural alternative to dexamethasone in the management of coVID-19? F1000Res. 2021; 10: 273. https://doi.org/10.12688/f1000research.51786.1

24. Федотчева Н.И., Литвинова Е.Г., Оcипов А.А., Оленин А.Ю., Мороз В.В., Белобородова Н.В. Влияние микробных метаболитов фенольной пpиpоды на активноcть митоxондpиальныx феpментов. Биофизика. 2015; 60(6): 1118–24. https://doi.org/10.1134/s0006350915060068

25. Федотчева Н.И., Теплова В.В., Белобородова Н.В. Участие фенольных кислот микробного происхождения в дисфункции митохондрий при сепсисе. Биологические мембраны. 2010; 27(1): 60–6. https://doi.org/10.1134/s1990747810010083

26. Beloborodova N., Moroz V., Bedova A., Sarshor Y., Osipov A., Chernevskaya K. High levels of phenyl carboxylic acids reflect the severity in ICU patients and affect phagocytic activity of neutrophils. Critical Care. 2016; 20(1): 3.

27. Beloborodova N.V., Bairamov I., Olenin A., Fedotcheva N.I. Effect of phenolic acids originating from microbes on mitochondria and neutrophils. Critical Care. 2012; 16(3): 26. https://doi.org/10.1186/cc11713

28. Schmidt S., Westhoff T.H., Krauser P., Zidek W., van der GietSchmidt M.S. The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells. Neprol. Dial. Transplant. 2008; 23(1): 65–71. https://doi.org/10.1093/ndt/gfm475

29. Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira К., et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS ONE. 2014; 9 (1): e87538. https://doi.org/10.1371/journal.pone.0087538


Review

For citations:


Sidorov S.P., Aleshina O.I., Tsoy D.V., Nikiforov A.S., Zhakovko E.B., Kuzmin A.A. Dynamics of short-chain fatty acids and aromatic microbial metabolites in rat blood serum during sulfur mustard intoxication. Toxicological Review. 2025;33(3):189-196. (In Russ.) https://doi.org/10.47470/0869-7922-2025-33-3-189-196

Views: 35


ISSN 0869-7922 (Print)
ISSN 3034-4611 (Online)