Preview

Toxicological Review

Advanced search

LEAD AND CADMIUM SUBCHRONIC INTOXICATION IN RATS AS A FACTOR OF DAMAGE TO THE CARDIOVASCULAR SYSTEM

https://doi.org/10.36946/0869-7922-2020-4-3-11

Abstract

Lead-cadmium intoxication is an occupational risk factor for copper-smelting industry workers. People inhabiting the areas near the copper plants are also at risk. Subchronic intoxication was modeled by repeated intraperitoneal injections of lead acetate and cadmium chloride both in isolation and in combination, 3 times a week for 6 weeks. A heart rate decrease in animals with Cd intoxication and a blood flow velocity decrease in those with Pb intoxication have been found. The impact of Pb and Cd on blood pressure proved to be contra-directional. ECG analysis revealed a prolonged duration of QRS in Cd intoxication, a prolonged QT interval and a baseline lowering in Pb+Cd intoxication. A variety of changes has been found with respect to the diameter of cardiomyocytes and the thickness of aortic wall layers in Pb and/or Cd intoxication. Any toxic exposure resulted in the decrease in number of nuclei per unit area of myocardium histological preparation.

About the Authors

S. V. Klinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Klinova Svetlana Vladislavovna

620014, Yekaterinburg



I. A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Minigalieva Ilzira Amirovna

620014, Yekaterinburg



L. I. Privalova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Privalova Larisa Ivanovna

620014, Yekaterinburg



M. P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Sutunkova Marina Petrovna

620014, Yekaterinburg



V. B. Gurvich
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Gurvich Vladimir Borisovich

620014, Yekaterinburg



Ju. V. Ryabova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Ryabova Juliya Vladimirovna

620014, Yekaterinburg



S. N. Solovjeva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Solovjeva Svetlana Nikolaevna

620014, Yekaterinburg



V. G. Panov
Institute of Industrial Ecology, Urals Branch of the Russian Academy of Sciences
Russian Federation

Panov Vladimir Grigorievich

620990, Yekaterinburg



I. E. Valamina
Central Research Laboratory, Ural State Medical University
Russian Federation

Valamina Irina vgenievna

620109, Yekaterinburg



I. N. Chernishov
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Chernishov Ivan Nikolaevich

620014, Yekaterinburg



B. A. Katsnelson
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of Rospotrebnadzor
Russian Federation

Katsnelson Boris Aleksandrovich

620014, Yekaterinburg



References

1. Fiorim J., Ribeiro R.F., Silveira E.A., Padilha A.S., Vescovi M.V., de Jesus H.C. et al. Low-level lead exposure increases systolic arterial pressure and endotheliumderived vasodilator factors in rat aortas. PLoS One. 2011; 6(2): e17117. https://doi.org/10.1371/journal.pone.0017117.

2. Glenn B.S., Bandeen-Roche K., Lee B.K., Weaver V.M., Todd A.C., Schwartz B.S. Changes in systolic blood pressure associated with lead in blood and bone. Epidemiol. 2006; 17: 538–544. https://doi.org/10.1097/01.ede.0000231284.19078.4b.

3. Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead exposure and cardiovascular disease–a systematic review. Environ. Health Perspect. 2007; 115: 472–482. https://dx.doi.org/10.1289%2Fehp.9785.

4. Gidlow D.A. Lead toxicity. Occup. Med. 2015; 65(5): 348–356. https://doi.org/10.1093/occmed/kqv018.

5. Carmignani M., Volpe A.R., Boscolo P., Qiao N., Di Gioacchino M., Grilli A. et al. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. 2000; 68: 401–415. https://doi.org/10.1016/S0024-3205(00)00954-1.

6. Silveira E.A., Siman F.D., de Oliveira F.T., Vescovi M.V., Furieri L.B., Lizardo J.H. et al. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic. Biol. Med. 2014; 67: 366–376. https://doi.org/10.1016/j.freeradbiomed.2013.11.021.

7. Simões M.R., Ribeiro Júnior R.F., Vescovi M.V., de Jesus H.C., Padilha A.S., Stefanon I. et al. Acute lead exposure increases arterial pressure: role of the reninangiotensin system. PLoS One. 2011; 6: e18730. https://doi.org/10.1371/journal.pone.0018730.

8. Vaziri N.D., Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011; 31(1-3): 189-196. http://dx.doi.org/10.1159/000321845.

9. Fioresi M., Furieri L.B., Simões M.R., Ribeiro R.F.Jr., Meira E.F., Fernandes A.A. et al. Acute exposure to lead increases myocardial contractility independent of hypertension development. Braz. J. Med. Biol. Res. 2013; 46: 178–185. https://dx.doi.org/10.1590%2F1414-431X20122190.

10. Fioresi M., Simões M.R., Furieri L.B., Broseghini-Filho G.B., Vescovi M.V., Stefanon, I. et al. Chronic lead exposure increases blood pressure and myocardial contractility in rats. PLoS One. 2014; 9(5): e96900. https://doi.org/10.1371/journal.pone.0096900.

11. Protsenko Y.L., Katsnelson B.A., Klinova S.V., Lookin O.N., Balakin A.A., Nikitina L.V. et al. Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem. Toxicol. 2018; 120: 378-389. https://doi.org/10.1016/j.fct.2018.07.034.

12. Protsenko Y.L., Katsnelson B.A., Klinova S.V., Lookin O.N., Balakin A.A., Nikitina L.V. et al. Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem. Toxicol. 2019; 125(2019): 233–241. https://doi.org/10.1016/j.fct.2018.12.054.

13. Silva M.A., de Oliveira T.F., Almenara C.C., Broseghini-Filho G.B., Vassallo D.V., Padilha A.S. et al. Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle. Biol. Trace Elem. Res. 2015; 167: 280–287. https://doi.org/10.1007/s12011-015-0300-0.

14. Borné Y., Barregard L., Persson M., Hedblad B., Fagerberg B., Engström G. Cadmium exposure and incidence of heart failure and atrial fibrillation: a populationbased prospective cohort study. BMJ Open. 2015; 5: e007366. http://dx.doi.org/10.1136/bmjopen-2014-007366.

15. Franceschini N., Fry R.C., Balakrishnan P., Navas-Acien A., Oliver-Williams C., Howard A.G. et al. Cadmium body burden and increased blood pressure in middleaged American Indians: The Strong Heart Study. J. Hum. Hypertens. 2017; (3): 225-230. https://doi.org/10.1038/jhh.2016.67.

16. Larsson S.C., Wolk A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and metaanalysis of cohort studies. Int. J. Epidemiol. 2016; 45(3): 782-791. https://doi.org/10.1093/”e/dyv086.

17. Myong J.P., Kim H.R., Jang T.W., Lee H.E., Koo J.W. Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean National Health and Nutrition Examination Survey 2008-2010. PLoS One. 2014; 9(11): e111909. https://doi.org/10.1371/journal.pone.0111909.

18. Almenara C.C., Broseghini-Filho G.B., Vescovi M.V., Angeli J.K., Faria T. de O., Stefanon I. et al. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One. 2013; 8(7): e68418. https://dx.doi.org/10.1371%2Fjournal.pone.0068418.

19. Chen C., Zhang S., Liu Z., Tian Y., Sun Q. Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes. Bioscie. Rep. 2015; 35(3): e00214. https://dx.doi.org/10.1042%2FBSR20140170.

20. Turdi S., Sun W., Tan Y., Yang X., Cai L., Ren J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin. Exp. Pharmacol. Physiol. 2013; 40(10): 706-712. https://doi.org/10.1111/1440-1681.12158

21. Gallagher C.M., Meliker J.R. Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ. Health Perspect. 2010; 118(12): 1676-1684.

22. Puri V.N. Cadmium induced hypertension. Clin. Exp. Hypertens. 1999; 21(1-2): 79-84.

23. Ferramola M.L., Pérez Díaz M.F.F., Honoré S.M., Sánchez S.S., Antón R.I., Anzulovich A.C. et al. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet. Toxicol. Appl. Pharmacol. 2012; 265(2012): 380–389. https://doi.org/10.1016/j.taap.2012.09.009.

24. Panov V.G., Varaksin A.N., Minigalieva I.A., Katsnelson B.A. The Response Surface Methodology as an approach of choice to modeling and analyzing combined toxicity: theoretical premises, the most important inferences, experimental justification. Biom. Biostat. J. 2017; 1(1): 112-124.

25. Klinova S.V., Minigalieva I.A., Privalova L.I., Valamina I.E., Makeyev O.H., Shuman E.A., et al. Further verification of some postulates of the combined toxicity theory: new animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2019.110971 (in press).

26. Minigalieva I.A., Katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I., et al. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment (a synthesis of results obtained by the Ekaterinburg research team, Russia). Toxicol. Rep. 2017; 4 : 194-201. https://dx.doi.org/10.1016%2Fj.toxrep.2017.04.002.

27. Amann K., Wolf B., Nichols C., Törnig J., Schwarz U., Zeier M. et al. Aortic changes in experimental renal failure: hyperplasia or hypertrophy of smooth muscle cells? Hyperten. 1997; 29(3): 770-775.

28. Walker H.L., Moses H.A. Cadmium: hypertension induction and lead mobilization. J. Natl. Med. Assoc. 1979; 71(12): 1187-1189.

29. Boscolo P., Carmignani M. Mechanisms of cardiovascular regulation in male rabbits chronically exposed to cadmium. Br. J. Ind. Med. 1986; 43(9): 605–610. https://dx.doi.org/10.1136%2Foem.43.9.605.

30. Puri V.N. Cadmium induced hypertension. Clin. Exp. Hypertens. 1999; 21(1-2): 79-84.


Review

For citations:


Klinova S.V., Minigalieva I.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Ryabova J.V., Solovjeva S.N., Panov V.G., Valamina I.E., Chernishov I.N., Katsnelson B.A. LEAD AND CADMIUM SUBCHRONIC INTOXICATION IN RATS AS A FACTOR OF DAMAGE TO THE CARDIOVASCULAR SYSTEM. Toxicological Review. 2020;(4):3-11. (In Russ.) https://doi.org/10.36946/0869-7922-2020-4-3-11

Views: 10128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7922 (Print)