Preview

Toxicological Review

Advanced search

Modern approaches to laboratory diagnostics of poisoning with haloperidol and risperidone (literature review)

https://doi.org/10.47470/0869-7922-2025-33-6-467-476

EDN: hkniui

Abstract

In the structure of reported cases of acute poisoning, a significant part is drug poisoning, among which a notable proportion is occupied by neuroleptics, particularly haloperidol and risperidone. The material for the analysis was the sources of literature reviewed in PubMed, Scopus, and RSCI bibliographic databases. The content analysis was conducted taking into account the peculiarities of the toxic effect and existing methods for the determination of neuroleptics in biological samples.

It has been demonstrated that neuroleptic poisoning presents a serious medical and social issue due to its high prevalence and severity of intoxication. This study presents the current procedure for conducting chemical and toxicological, forensic and chemical examinations of neuroleptic poisonings, with blood, urine, and hair being used as biological samples. It has been established that the determination of neuroleptic substances in hair is the most informative method, as these substances are not metabolized and can be detected over a long period after taking the drug. Information is provided on the pharmacokinetics and pharmacodynamics of haloperidol and risperidone, the clinical picture of poisoning with these antipsychotics, and existing treatment approaches. The analysis of methods for isolating and detecting haloperidol and risperidone in biological samples, such as blood, urine, and hair, was conducted. It was found that solid-phase and liquid extraction are the most effective methods for isolating these drugs from biological materials. High-performance liquid chromatography with various detectors was identified as the preferred technique for detecting these drugs.

Neuroleptic poisoning is a significant social and medical issue that necessitates the development of improved methods for isolating and identifying drugs in biological samples.

Authors’ contribution: All co-authors made an equal contribution to the research and preparation of the article for publication.

Conflict of interests. The authors declare that there are no conflicts of interest.

Funding. The study had no sponsorship.

Received: March 11, 2025 / Accepted: November 25, 2025 / Published: January 15, 2026

About the Authors

Bogdan V. Degtyarenko
Saint Petersburg State Chemical and Pharmaceutical University, Ministry of Health of the Russian Federation
Россия

Postgraduate Student, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, St. Petersburg, 197022, Russian Federation

e-mail: bogdan.degtyarenko@spcpu.ru



Olga Yu. Strelova
Saint Petersburg State Chemical and Pharmaceutical University, Ministry of Health of the Russian Federation
Россия

Doctor of Pharmaceutical Sciences, Professor, Head of the Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, St. Petersburg, 197022, Russian Federation

e-mail: olga.strelova@pharminnotech.com



Alexander N. Grebenyuk
Saint Petersburg State Chemical and Pharmaceutical University, Ministry of Health of the Russian Federation; I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of the Russian Federation
Россия

Doctor of Medical Sciences, Professor, Professor of the Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation, St. Petersburg, 197022, Russian Federation; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russian Federation

e-mail: grebenyuk_an@mail.ru



References

1. Cobaugh D.J., Erdman A.R., Booze L.L., Scharman E.J., Christianson G., Manoguerra A.S., et al. Atypical antipsychotic medication poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin. Toxicol. (Phila). 2007; 45(8): 918–42. https://doi.org/10.1080/15563650701665142

2. Efendiev I.N., Azizov V.A. Poisoning by psychopharmacological drugs in Azerbaijan: the results of 8-year prospective observation. Meditsinskie novosti Gruzii. 2017; (11): 138–42. (in Russian)

3. Berling I., Buckley N.A., Isbister G.K. The antipsychotic story: changes in prescriptions and overdose without better safety. Br. J. Clin. Pharmacol. 2016; 82(1): 249–54. https://doi.org/10.1111/bcp.12927

4. Kravchenko I.V. Suicidal poisoning with psychotropic drugs. Tikhookeanskii meditsinskii zhurnal. 2008; (4): 51–3. https://elibrary.ru/kuexyx (in Russian)

5. Kasimova L.N., Svyatogor M.V., Vtyurina M.V. Analysis of suicide attempts by self-poisoning. Tyumenskii meditsinskii zhurnal. 2011; (2): 37–8. https://elibrary.ru/ppmwnu (in Russian)

6. Yin Y., Lin C., Wei L., Tong J., Huang J., Tian B., et al. History of suicidal behavior and clozapine prescribing among people with schizophrenia in China: a cohort study. BMC Psychiatry. 2024; 24(1): 440–9. https://doi.org/10.1186/s12888-024-05893-y

7. Zanaty W., Hatab M.A., Girgis F., Zaher A., Hammad A. Evaluation of acute antipsychotic poisoned cases. Menoufia Med. J. 2016; 29(4): 1116–21. https://doi.org/10.4103/1110-2098.202527

8. Zhuravleva A.S., Vikman P.S., Strelova O.Yu., Slustovskaya Yu.V., Chuvina N.A. Determining the time of intoxication due to non-drug use of tropicamide. Sudebno-meditsinskaya ekspertiza. 2022; 65(5): 39–45. https://doi.org/10.17116/sudmed20226505139 https://elibrary.ru/lnfgvl (in Russian)

9. Slustovskaya Yu.V., Strelova O.Yu., Kuklin V.N. The development and validation of the methods for enzymatic hydrolysis for the extraction of toxic compounds from the uncoloured hairs. Sudebno-meditsinskaya ekspertiza. 2019; 62(1): 24–30. https://doi.org/10.17116/sudmed20196201124 https://elibrary.ru/ywyxad (in Russian)

10. Slustovskaya Yu.V., Krysko M.V., Strelova O.Yu., Kuklin V.N. Hair research for the diagnosis of psychoactive substance use. Vestnik Rossiiskoi Voenno-meditsinskoi akademii. 2019; (1): 120–6. https://elibrary.ru/vwymxt (in Russian)

11. Battaglia J. Pharmacological management of acute agitation. Drugs. 2005; 65(9): 1207–22. https://doi.org/10.2165/00003495-200565090-00003

12. Agar M.R., Lawlor P.G., Quinn S., Draper B., Caplan G. A., Rowett D., et al. Efficacy of oral risperidone, haloperidol, or placebo for symptoms of delirium among patients in palliative care: a randomized clinical trial. JAMA Intern. Med. 2017; 177(1): 34–42. https://doi.org/10.1001/jamainternmed.2016.7491

13. Hussain A., Kc S., Sapna F. Cannabinoid-associated hyperemesis syndrome treated with dronabinol: killing a poison with the poison. Cureus. 2023; 15(11): e49629. https://doi.org/10.7759/cureus.49629

14. Górska A., Marszałł M., Sloderbach A. The neurotoxicity of pyridinium metabolites of haloperidol. Postepy Hig. Med. Dosw. (Online). 2015; 69: 1169–75. https://doi.org/10.5604/17322693.1175009 (in Polish)

15. Kang H.J., Lee S.S., Lee C.H., Shim J.C., Shin H.J., Liu K.H., et al. Neurotoxic pyridinium metabolites of haloperidol are substrates of human organic cation transporters. Drug Metab. Dispos. 2006; 34(7): 1145–51. https://doi.org/10.1124/dmd.105.009126

16. Ulrich S., Wurthmann C., Brosz M., Meyer F.P. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin. Pharmacokinet. 1998; 34(3): 227–63. https://doi.org/10.2165/00003088-199834030-00005

17. Kornhuber J., Wiltfang J., Riederer P., Bleich S. Neuroleptic drugs in the human brain: clinical impact of persistence and region-specific distribution. Eur. Arch. Psychiatry Clin. Neurosci. 2006; 256(5): 274–80. https://doi.org/10.1007/s00406-006-0661-7

18. Miller J., Wehring H., McMahon R.P., DiPaula B.A., Love R.C., Morris A.A., et al. Urine testing for antipsychotics: a pilot trial for a method to determine detection levels. Human Psychopharmacol. 2015; 30(5): 350–5. https://doi.org/10.1002/hup.2482

19. Uematsu T., Sato R., Suzuki K., Yamaguchi S., Nakashima M. Human scalp hair as evidence of individual dosage history of haloperidol: method and retrospective study. Eur. J. Clin. Pharmacol. 1989; 37(3): 239–44. https://doi.org/10.1007/bf00679777

20. Moffat A.C., Osselton M.D., Widdop B. Clarke’s Analysis of Drugs and Poisons in Pharmaceuticals, Body Fluids and Postmortem Material. London: The Pharmaceutical Press; 2011.

21. Kudo S., Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin. Pharmacokinet. 1999; 3 (6): 435–56. https://doi.org/10.2165/00003088-199937060-00001

22. Isbister G.K., Balit C.R., Kilham H.A. Antipsychotic poisoning in young children: a systematic review. Drug Safety. 2005; 28(11): 1029–44. https://doi.org/10.2165/00002018-200528110-00004

23. Minns A.B., Clark R.F. Toxicology and overdose of atypical antipsychotics. J. Emerg. Med. 2012; 43(5): 906–13. https://doi.org/10.1016/j.jemermed.2012.03.002

24. Stroup T.S., Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry. 2018; 17(3): 341–56. https://doi.org/10.1002/wps.20567

25. Dekkers B.G.J., Eck R.J., Ter Maaten J.C., Touw D.J. An acute oral intoxication with haloperidol decanoate. Am. J. Emerg. Med. 2017; 35(9): 1387.e1-2. https://doi.org/10.1016/j.ajem.2017.07.013

26. Wongveerasin P., Othong R., Pinchumponsang A., Hungspruke W., Jongjaroenwit P. Clinical presentation and management of acute dystonia from drug abuse or misuse in adolescents and young adults: a retrospective cohort study in Bangkok, Thailand. Emerg. Med. Int. 2023; 2023: 2725974. https://doi.org/10.1155/2023/2725974

27. Grebenyuk A.N., ed. Toxicology and Medical Protection [Toksikologiya i meditsinskaya zashchita]. St. Petersburg: Foliant; 2016. (in Russian)

28. ANSI/ASB Standard 036, First Edition. Standard Practices for Method Validation in Forensic Toxicology; 2019. Available at: https://aafs.org/sites/default/files/media/documents/036_Std_e1.pdf

29. Proença P., Monteiro C., Mustra C., Claro A., Franco J., Corte-Real F. Identification and quantification of antipsychotics in blood samples by LC-MS-MS: case reports and data from three years of routine analysis. J. Anal. Toxicol. 2020; 44(8): 915–22. https://doi.org/10.1093/jat/bkaa100

30. Arinobu T., Hattori H., Iwai M., Ishii A., Kumazawa T., Suzuki O., et al. Liquid chromatographic-mass spectrometric determination of haloperidol and its metabolites in human plasma and urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002; 776(1): 107–13. https://doi.org/10.1016/s1570-0232(02)00175-7

31. Cobo-Golpe M., de-Castro-Ríos A., Cruz A., Páramo M., López-Rivadulla M., Lendoiro E. Determination of antipsychotic drugs in nails and hair by liquid chromatography tandem mass spectrometry and evaluation of their incorporation into keratinized matrices. J. Pharm. Biomed. Anal. 2020; 189: 113443. https://doi.org/10.1016/j.jpba.2020.113443

32. Eyles D.W., Whiteford H.A., Stedman T.J., Pond S.M. Determination of haloperidol and reduced haloperidol in the plasma and blood of patients on depot haloperidol. Psychopharmacology (Berl.). 1992; 106(2): 268–74. https://doi.org/10.1007/bf02801983

33. Aboul-Enein H.Y., Ali I., Hoenen H. Rapid determination of haloperidol and its metabolites in human plasma by HPLC using monolithic silica column and solid-phase extraction. Biomed. Chromatogr. 2006; 20(8): 760–4. https://doi.org/10.1002/bmc.593

34. Park K.H., Lee M.H., Lee M.G. Simultaneous determination of haloperidol and its metabolite, reduced haloperidol, in plasma, blood, urine and tissue homogenates by high-performance liquid chromatography. J. Chromatogr. 1991; 572(1–2): 259–67. https://doi.org/10.1016/0378-4347(91)80490-4

35. Jatlow P.I., Miller R., Swigar M. Measurement of haloperidol in human plasma using reversed-phase high-performance liquid chromatography. J. Chromatogr. 1982; 227(1): 233–8. https://doi.org/10.1016/s0378-4347(00)80378-3

36. Tarun J., Anil B., Veerma R., Sanjay S., Ratendra K.C., Manish P. High performance liquid chromatographic method with diode array detection for quantification of haloperidol levels in schizophrenic patients during routine clinical practice. J. Bioanal. Biomed. 2011; 3(1): 8–12. https://doi.org/10.4172/1948-593X.1000037

37. Susanto F., Humfeld S., Neumann A. Simple plasma treatment for the quantitative determination of haloperidol by HPLC. Anal. Bioanal.Chem. 1985; 321: 177–9. https://doi.org/10.1007/bf01117760

38. Zidekova N., Nemcek A., Sutovska M., Mokry J., Kertys M. Development of sensitive and high-throughput liquid chromatography-tandem mass spectrometry method for quantification of haloperidol in human plasma with phospholipid removal pretreatment. J. Anal. Toxicol. 2021; 45(6): 573–80. https://doi.org/10.1093/jat/bkaa124

39. Schotte A., Janssen P.F., Gommeren W., Luyten W.H., Van Gompel P., Lesage A.S., et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology. 1996; 124(1–2): 57–73. https://doi.org/10.1007/BF02245606

40. Riedel M., Schwarz M.J., Strassnig M., Strassnig M., Spellmann I., Müller-Arends A., et al. Risperidone plasma levels, clinical response and side-effects. Eur. Arch. Psychiatry Clin. Neurosci. 2005; 255(4): 261–8. https://doi.org/10.1007/s00406-004-0556-4

41. Aymard N., Viala A., Clement M.N., Jacquot M., Vacheron M.N., Gauillard J., et al. Long-term pharmacoclinical follow-up in schizophrenic patients treated with risperidone. Plasma and red blood cell concentrations of risperidone and its 9-hydroxymetabolite and their relationship to whole blood serotonin and tryptophan, plasma homovanillic acid, 5-hydroxyindoleacetic acid, dihydroxyphenylethyleneglycol and clinical evaluations. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2002; 26(5): 975–88. https://doi.org/10.1016/s0278-5846(02)00218-x

42. Sun X., Wang L., Yang F., Ren J., Jiang P., Liu H., et al. Correlation of hair risperidone concentration and serum level among patients with schizophrenia. Gen. Psychiatr. 2019; 32(1): 100042. https://doi.org/10.1136/gpsych-2018-100042

43. Schneider S., Sibille E., Yegles M., Neels H., Wennig R., Mühe A. Time resolved analysis of risperidone and 9-hydroxy-risperidone in hair using LC/MS-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009; 877(24): 2589–92. https://doi.org/10.1016/j.jchromb.2009.06.035

44. Wang X., Zhuo Y., Tang X., Qiang H., Liu W., Wu H., et al. Segmental analysis of antidepressant and antipsychotic drugs in the hair of schizophrenic patients. Drug Test. Anal. 2020; 12(4): 472–84. https://doi.org/10.1002/dta.2754

45. Levine M., Ruha A.M. Overdose of atypical antipsychotics: clinical presentation, mechanisms of toxicity and management. CNS Drugs. 2012; 26(7): 601–11. https://doi.org/10.2165/11631640-000000000-00000

46. McNeil S.E., Gibbons J.R., Cogburn M. Risperidone. StatPearls; 2025. Available at: https://ncbi.nlm.nih.gov/books/NBK459313

47. Springfield A.C., Bodiford E. An overdose of risperidone. J. Anal. Toxicol. 1996; 20(3): 202–3. https://doi.org/10.1093/jat/20.3.202

48. Nishikage H., Nakanishi T., Takamitsu Y., Yamamoto J. Sequential changes in the plasma concentration of risperidone following intentional overdose. Clin. Neuropharmacol. 2002; 25(6): 307–9. https://doi.org/10.1097/00002826-200211000-00005

49. Roman M., Kronstrand R., Lindstedt D., Josefsson M. Quantitation of seven low-dosage antipsychotic drugs in human postmortem blood using LC-MS-MS. J. Anal. Toxicol. 2008; 32(2): 147–55. https://doi.org/10.1093/jat/32.2.147

50. Mandrioli R., Mercolini L., Lateana D., Boncompagni G., Raggi M.A. Analysis of risperidone and 9-hydroxyrisperidone in human plasma, urine and saliva by MEPS-LC-UV. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011; 879(2): 167–73. https://doi.org/10.1016/j.jchromb.2010.11.033

51. Charmahali G., Qomi M., Akhavan S., Chaharmahali M., Tafti F.F. Determination of trace amounts of risperidone in human urine sample by hollow fiber liquid-phase microextraction combined with high performance liquid chromatography. Biosci. Biotechnol. Res. Asia. 2015; 12(1): 539–48.

52. Oloyede R.B., Salisu A., Nasir I., Musa A. Development and validation of a reverse phase High Performance Liquid Chromatographic method, using standard addition calibration, for determination of risperidone in human plasma. J. Pharm Bio. 2022; 19(1): 9–15. https://doi.org/10.4314/jpb.v19i1.2

53. Cabovska B., Cox S.L., Vinks A.A. Determination of risperidone and enantiomers of 9-hydroxyrisperidone in plasma by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007; 852(1-2): 497–504. https://doi.org/10.1016/j.jchromb.2007.02.007

54. Aravagiri M., Marder S.R., Van Putten T., Midha K.K. Determination of risperidone in plasma by high-performance liquid chromatography with electrochemical detection: application to therapeutic drug monitoring in schizophrenic patients. J. Pharm. Sci. 1993; 82(5): 447–9. https://doi.org/10.1002/jps.2600820503

55. Torres-Vergara P., Sepulveda J., Von Plessing C. Pharmacokinetic study of risperidone. Application of a HPLC method with solid phase extraction. J. Chil. Chem. Soc. 2011; 56(1): 606–9. https//doi.org/10.4067/S0717-97072011000100019

56. Nagasaki T., Ohkubo T., Sugawara K., Yasui N., Furukori H., Kaneko S. Determination of risperidone and 9-hydroxyrisperidone in human plasma by high-performance liquid chromatography: application to therapeutic drug monitoring in Japanese patients with schizophrenia. J. Pharm. Biomed. Anal. 1999; 19(3-4): 595–601. https://doi.org/10.1016/s0731-7085(98)00261-1

57. Jones T., Van Breda K., Charles B., Dean A.J., McDermott B.M., Norris R. Determination of risperidone and 9-Hydroxyrisperidone using HPLC, in plasma of children and adolescents with emotional and behavioural disorders. Biomed. Chromatogr. 2009; 23(9): 929–34. https://doi.org/10.1002/bmc.1204

58. Huang M.Z., Shentu J.Z., Chen J.C., Liu J., Zhou H.L. Determination of risperidone in human plasma by HPLC-MS/MS and its application to a pharmacokinetic study in Chinese volunteers. J. Zhejiang Univ. Sci. B. 2008; 9(2): 114–20. https://doi.org/10.1631/jzus.b0710439

59. Avenoso A., Facciolà G., Salemi M., Spina E. Determination of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma by reversed-phase liquid chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 2000; 746(2): 173–81. https://doi.org/10.1016/s0378-4347(00)00323-6


Review

For citations:


Degtyarenko B.V., Strelova O.Yu., Grebenyuk A.N. Modern approaches to laboratory diagnostics of poisoning with haloperidol and risperidone (literature review). Toxicological Review. 2025;33(6):467-476. (In Russ.) https://doi.org/10.47470/0869-7922-2025-33-6-467-476. EDN: hkniui

Views: 22

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7922 (Print)
ISSN 3034-4611 (Online)